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Background 

 

Here is an example of a second order system from EAS 206.  

Fs = kx Fv = c dx/dt 

F(t)+ Fv + Fs = m d
2
x/dt

2 

F(t)
 

m
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We can write the equation in the form 

 

2

2
( )

d x dx
m c kx F t

dt dt  

consider first the simpler case where c = 0 (no damping) and F(t) = 0. The 

equation becomes 

 

2

2
0

d x
m kx

dt  

which has the solution 

 
sin( )ny C t

 

The mass will oscillate sinusoidally and the oscillation will continue 

forever at the undamped natural frequency ωn 

Recognizing the periodic nature of the solution, it is convenient to rewrite the 

equation in the form 

 

2

2 2

1 2
( )

n n

d y dy
y KF t

dt dt
  (3.13) 

where ωn is the natural frequency and ζ (zeta) is the damping ratio.   

 = natural frequency of the system 

 = damping ratio of the system 
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Homogeneous Solution 

The form of the homogeneous solution depends on the roots of the characteristic 

equation 

 

2

2

1 2
1 0

n n  

The quadratic equation has two roots, 

 

2

1,2 1n n  

Depending on the value of ζ , three forms of the homogeneous solution are 

possible: 

 0 < ζ < 1 (under damped system solution) 

 
( ) sinn

2-  t
nh

t =  1- t +y Ce
 (3.14a) 

ζ = 1 (critically damped system solution) 

 

1 2

1 2( ) t t

hy t =  C e +C te
 (3.14b) 

ζ > 1 (over damped system solution) 

 

1 2

1 2( ) t t

hy t C e C e
 (3.14c) 

The particular solution will depend on the forcing function F(t). 
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Step Function Input 

For an underdamped system, 0 < ζ < 1,  F(t) = AU(t), the solution of equation 

(3.13) is:  

2 2

1/ 2
2

sin 1 cos 1
1

nt
n n

 
y(t)= KA KAe t t

 
(3.15a) 

For a critically damped system the solution is: 

 
(1 ) nt

ny(t)= KA KA t e
 (3.15b) 

For an overdamped system the solution is: 

 

2 22 2
1 1

2 2

1 1

2 1 2 1

n nt t

y(t)= KA KA e e
(3.15c) 
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For underdamped systems, the output oscillates at the ringing frequency ωd 

 

2 1
d

d d

T  = 
f  (3.16) 

 

2

d n =   1 - 
 (3.17) 

Remember  

Rise Time 

By definition it is the time required for the system to achieve a value of 90% of 

the step input. The rise time is decreased by decreasing the damping (see figure 

3.13 above). Obviously there is a tradeoff between fast response and ringing in a 

second order system. 

Settling Time 

The settling time is defined as the time required for the system to settle to within 

±10% of the steady state value. 

A damping ratio, , of 0.7 offers a good compromise between rise time and 

settling time. Most dynamic response measurement systems are designed such 

that the damping ratio is between 0.6 and 0.8 

Frequency Response 

If F(t) = A sin ωt, the solution is given by 

 
2 1/ 22 2

sin[ ( )]
( )

{[1 ( ) ] (2 ) }
h

n n

KA t +
y t = +y

- / + /
 (3.18) 

The first term is a transient which will eventually die out - the steady-state 

response can be written in the form 

 
( ) ( ) sin[ ( )]y t = M KA t +

 (3.20) 
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 where 

 

1 2
( ) tan

1 ( )

n

2

n

 /
=

- /  (3.19) 

 

 2 2 1/ 22

1
( )

{[1 ( (2) ) }]n n

B
M = =

KA - / + /  (3.21) 

EXAMPLE 3.8 

Find the rise and settling time and damped natural frequency of the second order 

system step input response in figure 3.15. 

From the figure y0 is determined to be 1 V (note error in y axis label) and y  = 2 V. 

Therefore 90% of (y -y0) is 0.9 V. The rise time can be determined by locating the 

point at which the system response reaches y0 + 0.9V = 1.9 V. The settling time is 

determined by locating the point at which the system remains with the range of 

y  ± 10%( y -y0) = 2 ±0.1V 

The damped natural frequency or ringing frequency is found by determining the 

period of the oscillation, Td, and recalling the relation between period in seconds, 

frequency in cycles per second and the conversion to circular frequency, 

radians/second. From the graph Td is found to be 13 ms. Therefore fd = 1/13 ms = 

d/2π .  
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Resonance Frequency 

Underdamped second order systems may resonate or oscillate at a greater 

magnitude than the input, M( ) > 1. 

Resonance Band: is the frequency range over which M( ) > 1. 

Resonance Frequency: is defined as 1 2
2

R n= -  

Systems with a damping ratio greater than  > 0.707 do not resonate.  
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EXAMPLE 3.10 

Select and appropriate accelerometer natural frequency and damping ratio to 

measure frequencies below 100 Hz (628 rad/s) and maintain a dynamic error of 

±5%. (i.e. M( )  0.95) 

Assume that the accelerometer has a damping ratio of most dynamic sensors of 

0.7. Therefore using equation 3.21 one could solve for n or plot the equation 

with  = 0.7 and find the frequency range over which  1.05  M( )   0.95. 
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