

Appendix G

UNIFAC Method

The UNIQUAC equation $g \equiv G^E/RT$ as the sum of two parts, a combinatorial term g^C to account for molecular size and shape differences, and a residual term g^R (not a residual property as defined in Sec. 6.2) to account for molecular interactions:

$$g \equiv g^C + g^R \tag{G.1}$$

Function g^C contains pure-species parameters only, whereas function g^R incorporates two binary parameters for each pair of molecules. For a multicomponent system,

$$g^{C} = \sum_{i} x_{i} \ln \frac{\Phi_{i}}{x_{i}} + 5 \sum_{i} q_{i} x_{i} \ln \frac{\theta_{i}}{\Phi_{i}}$$
 (G.2)

$$g^{R} = -\sum_{i} q_{i} x_{i} \ln \left(\sum_{j} \theta_{j} \tau_{ji} \right)$$
 (G.3)

where

$$\Phi_i \equiv \frac{x_i r_i}{\sum_j x_j r_j} \tag{G.4}$$

$$\theta_i \equiv \frac{x_i q_i}{\sum_j x_j q_j} \tag{G.5}$$

Subscript i identifies species, and j is a dummy index; all summations are over all species. Note that $\tau_{ji} \neq \tau_{ij}$; however, when i = j, then $\tau_{ii} = \tau_{jj} = 1$. In these equations r_i (a relative molecular volume) and q_i (a relative molecular surface area) are pure-species parameters. The influence of temperature on g enters through the interaction parameters τ_{ii} of Eq. (G.3), which are temperature dependent:

730

$$\tau_{ji} = \exp\frac{-\left(u_{ji} - u_{ii}\right)}{RT} \tag{G.6}$$

Parameters for the UNIQUAC equation are therefore values of $(u_{ii} - u_{ii})$.

¹D. S. Abrams and J. M. Prausnitz, *AIChE J.*, vol. 21, pp. 116–128, 1975.

731

An expression for $\ln \gamma_i$ is found by application of Eq. (13.7) to the UNIQUAC equation for g [Eqs.(G.1) through (G.3)]. The result is given by the following equations:

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R \tag{G.7}$$

$$\ln \gamma_i^C = 1 - J_i + \ln J_i - 5q_i \left(1 - \frac{J_i}{L_i} + \ln \frac{J_i}{L_i} \right)$$
 (G.8)

$$\ln \gamma_i^R = q_i \left(1 - \ln s_i - \sum_j \theta_j \frac{\tau_{ij}}{s_j} \right)$$
 (G.9)

where in addition to Eqs. (G.5) and (G.6),

$$J_i = \frac{r_i}{\sum_j r_j x_j} \tag{G.10}$$

$$L_i = \frac{q_i}{\sum_j q_j x_j} \tag{G.11}$$

$$S_i = \tau_{li} \sum_{l} \theta_l \tag{G.12}$$

Again subscript i identifies species, and j and l are dummy indices. All summations are over all species, and $\tau_{ij} = 1$ for i = j. Values for the parameters $(u_{ij} - u_{jj})$ are found by regression of binary VLE data and are given by Gmehling et al.²

The UNIFAC method for estimation of activity coefficients³ depends on the concept that a liquid mixture may be considered a solution of the structural units from which the molecules are formed rather than a solution of the molecules themselves. These structural units are called *subgroups*, and a few of them are listed in the second column of Table G.1. A number, designated k, identifies each subgroup. The relative volume R_k and relative surface area Q_k are properties of the subgroups, and values are listed in columns 4 and 5 of Table G.1. Also shown (columns 6 and 7) are examples of molecular species and their constituent subgroups. When a molecule can be constructed from more than one set of subgroups, the set containing the least number of *different* subgroups is the correct set. The great advantage of the UNIFAC method is that a relatively small number of subgroups combine to form a very large number of molecules.

Activity coefficients depend not only on the subgroup properties R_k and Q_k , but also on interactions between subgroups. Here, similar subgroups are assigned to a main group, as shown in the first two columns of Table G.1. The designations of main groups, such as "CH₂," "ACH," etc., are descriptive only. All subgroups belonging to the same main group are

²J. Gmehling, U. Onken, and W. Arlt, *Vapor-Liquid Equilibrium Data Collection*, Chemistry Data Series, vol. I, parts 1–8 and supplements, DECHEMA, Frankfurt/Main, 1974–1999.

³Aa. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J., vol. 21, pp. 1086–1099, 1975.

Table G.1: UNIFAC-VLE Subgroup Parameters[†]

Main group	Subgroup	k	R_k	Q_k	Examples of molecules and their		
- Wiam group	Subgroup	κ	κ_k	Qk	constituent groups		
1 "CH ₂ "	CH_3	1	0.9011	0.848	<i>n</i> -Butane:	2CH ₃ , 2CH ₂	
	CH_2	2	0.6744	0.540	Isobutane:	3CH ₃ , 1CH	
	CH	3	0.4469	0.228	2,2-Dimethyl		
	C	4	0.2195	0.000	propane:	4CH ₃ , 1C	
3 "ACH"	ACH	10	0.5313	0.400	Benzene:	6ACH	
(AC = ar	omatic carb	on)					
4 "ACCH ₂ "	ACCH ₃	12	1.2663	0.968	Toluene:	5ACH, 1ACCH ₃	
	$ACCH_2$	13	1.0396	0.660	Ethylbenzene:	1CH ₃ , 5ACH, 1ACCH ₂	
5 "OH"	ОН	15	1.0000	1.200	Ethanol:	1CH ₃ , 1CH ₂ , 1OH	
7 "H ₂ O"	H ₂ O	17	0.9200	1.400	Water:	1H ₂ O	
9 "CH ₂ CO"	CH ₃ CO	19	1.6724	1.488	Acetone:	1CH ₃ CO, 1CH ₃	
	CH ₂ CO	20	1.4457	1.180	3-Pentanone:	2CH ₃ , 1CH ₂ CO, 1CH ₂	
13 "CH ₂ O"	CH ₃ O	25	1.1450	1.088	Dimethyl ether:	1CH ₃ , 1CH ₃ O	
	CH_2O	26	0.9183	0.780	Diethyl ether:	2CH ₃ , 1CH ₂ , 1CH ₂ O	
	CH-O	27	0.6908	0.468	Diisopropyl ether:	4CH ₃ , 1CH, 1CH–O	
15 "CNH"	CH ₃ NH	32	1.4337	1.244	Dimethylamine:	1CH ₃ , 1CH ₃ NH	
	CH ₂ NH	33	1.2070	0.936	Diethylamine:	2CH ₃ , 1CH ₂ , 1CH ₂ NH	
	CHNH	34	0.9795	0.624	Diisopropylamine:	4CH ₃ , 1CH, 1CHNH	
19 "CCN"	CH ₃ CN	41	1.8701	1.724	Acetonitrile:	1CH ₃ CN	
	CH ₂ CN	42	1.6434	1.416	Propionitrile:	1CH ₃ , 1CH ₂ CN	

[†]H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, *IEC Research*, vol. 30, pp. 2352–2355, 1991.

considered identical with respect to group interactions. Therefore parameters characterizing group interactions are identified with pairs of *main* groups. Parameter values a_{mk} for a few such pairs are given in Table G.2.

The UNIFAC method is based on the UNIQUAC equation, for which the activity coefficients are given by Eq. (G.7). When applied to a solution of groups, Eqs. (G.8) and (G.9) are written:

$$\ln \gamma_i^C = 1 - J_i + \ln J_i - 5q_i \left(1 - \frac{J_i}{L_i} + \ln \frac{J_i}{L_i} \right)$$
 (G.13)

$$\ln \gamma_i^R = q_i \left[1 - \sum_k \left(\theta_k \frac{\beta_{ik}}{s_k} - e_{ki} \ln \frac{\beta_{ik}}{s_k} \right) \right]$$
 (G.14)

733

Table G.2: UNIFAC–VLE Interaction Parameters, $a_{mk},$ in kelvins †

19	597.00								
15	255.70								
13	251.50	32.14	213.10	28.06	540.50	-103.60	0.00	-56.08	38.81
6	476.40	25.77	-52.10	84.00	-195.40	0.00	191.10	394.60	-287.50
7	1318.00	903.80	5695.00	353.50	00.00	472.50	-314.70	-448.20	242.80
S	986.50	636.10	803.20	0.00	-229.10	164.50	237.70	-150.00	185.40
4	76.50								
3	61.13	0.00	-146.80	89.60	362.30	140.10	52.13	-22.31	-22.97
	0.00	-11.12	-69.70	156.40	300.00	26.76	83.36	65.33	24.82
	CH2								
		ω ·	4	5	7	6	13	15	19

†H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352–2355, 1991.

The quantities J and L are still given by Eqs. (G.10) and (G.11). In addition, the following definitions apply:

$$r_i = \sum_k v_k^{(i)} R_k \tag{G.15}$$

$$q_i = \sum_k v_k^{(i)} Q_k \tag{G.16}$$

$$e_{ki} = \frac{v_k^{(i)} Q_k}{q_i} \tag{G.17}$$

$$\beta_{ik} = \sum_{m} e_{mi} \tau_{mk} \tag{G.18}$$

$$\theta_k = \frac{\sum_i x_i q_i e_{ki}}{\sum_j x_j q_j} \tag{G.19}$$

$$s_k = \sum_m \theta_m \tau_{mk} \tag{G.20}$$

$$\tau_{mk} = \exp\frac{-a_{mk}}{T} \tag{G.21}$$

Subscript i identifies a species, and j is a dummy index running over all species. Subscript k identifies subgroups, and m is a dummy index running over all subgroups. The quantity $v_k^{(i)}$ is the number of subgroups of type k in a molecule of species i. Values of the subgroup parameters R_k and Q_k and of the group interaction parameters a_{mk} come from tabulations in the literature. Tables G.1 and G.2 show a few parameter values; the number designations of the complete tables are retained.

The equations for the UNIFAC method are presented here in a form convenient for computer programming. In the following example we run through a set of hand calculations to demonstrate their application.

Example G.1

For the binary system diethylamine(1)/n-heptane(2) at 308.15 K, find γ_1 and γ_2 when $x_1 = 0.4$ and $x_2 = 0.6$.

Solution G.1

The subgroups involved are indicated by the chemical formulas:

$$CH_3 - CH_2NH - CH_2 - CH_3(1)/CH_3 - (CH_2)_5 - CH_3(2)$$

⁴H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352–2355, 1991.

735

The following table shows the subgroups, their identification numbers k, values of parameters R_k and Q_k (from Table G.1), and the numbers of each subgroup in each molecule:

	k	R_k	Q_k	$v_k^{(1)}$	$v_k^{(2)}$
CH ₃	1	0.9011	0.848	2	2
CH_2	2	0.6744	0.540	1	5
CH_2NH	33	1.2070	0.936	1	0

By Eq. (G.15)

$$r_1 = (2)(0.9011) + (1)(0.6744) + (1)(1.2070) = 3.6836$$

Similarly,

$$r_2 = (2)(0.9011) + (5)(0.6744) = 5.1742$$

In like manner, by Eq. (G.16),

$$q_1 = 3.1720$$
 and

The r_i and q_i values are molecular properties, independent of composition. Substituting known values into Eq. (G.17) generates the following table for e_{ki} :

 $q_2 = 4.3960$

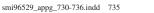
		e_{ki}
k	i = 1	i = 2
1	0.5347	0.3858
2	0.1702	0.6142
33	0.2951	0.0000

The following interaction parameters are found from Table G.2:

$$a_{1,1} = a_{1,2} = a_{2,1} = a_{2,2} = a_{33,33} = 0 \text{ K}$$

 $a_{1,33} = a_{2,33} = 255.7 \text{ K}$
 $a_{33,1} = a_{33,2} = 65.33 \text{ K}$

Substitution of these values into Eq. (G.21) with T = 308.15 K gives


$$\tau_{1,1} = \tau_{1,2} = \tau_{2,1} = \tau_{2,2} = \tau_{33,33} = 1$$

$$\tau_{1,33} = \tau_{2,33} = 0.4361$$

$$\tau_{33,1} = \tau_{33,2} = 0.8090$$

Application of Eq. (G.18) leads to the values of β_{ik} in the following table:

	eta_{ik}						
i	k = 1	k = 2	k = 33				
1 2	0.9436 1.0000	0.9436 1.0000	0.6024 0.4360				

Substitution of these results into Eq. (G.19) yields:

$$\theta_1 = 0.4342$$

$$\theta_2 = 0.4700$$

$$\theta_{33} = 0.0958$$

and by Eq. (G.20),

$$s_1 = 0.9817$$

$$s_2 = 0.9817$$

$$s_1 = 0.9817$$
 $s_2 = 0.9817$ $s_{33} = 0.4901$

The activity coefficients may now be calculated. By Eq. (G.13),

$$\ln \gamma_1^C = -0.0213$$

and

$$\ln \gamma_2^{\,C} = -0.0076$$

and by Eq. (G.14),

$$\ln \gamma_1^R = 0.1463$$

and
$$\ln \gamma_2^R = 0.0537$$

Finally, Eq. (G.7) gives:

$$\gamma_1 = 1.133$$

(

$$\gamma_2 = 1.047$$

