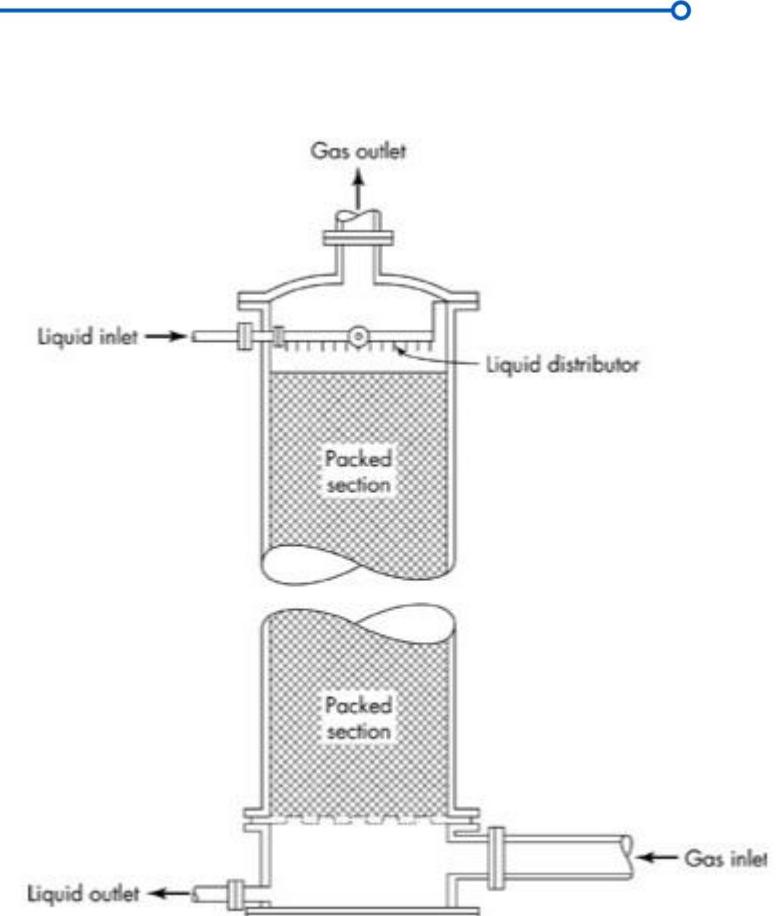
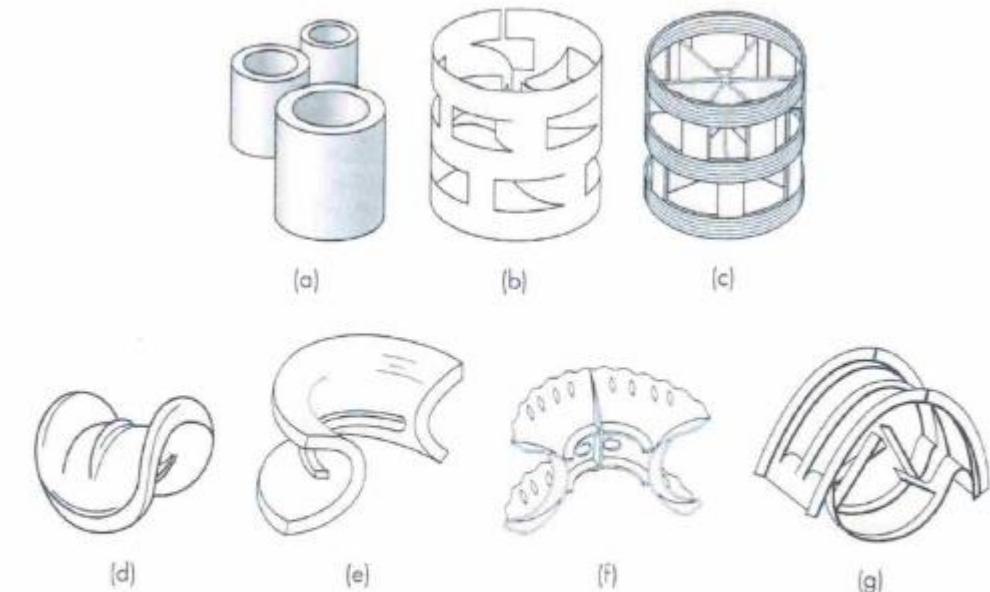


CE407 SEPARATIONS


Lecture 22

Instructor: David Courtemanche


Design of Packed Towers

- Even distribution of liquid flow across the cross-sectional area of the tower
- Good wetting of the packing
 - Avoid channeling
 - More likely with stacked packing than with dumped packing
 - Minimize flow down walls
 - Diameter of tower should be $> 8x$ the dimension of the packing
- Desire enough open space for vapor flow
 - Want to reduce ΔP through the tower

Types of Packing

- First packing was gravel
- Maximize surface area
- Lots of open space for vapor flow
- Shapes that do not “nest”
- Inexpensive construction
- Materials must be resistant to the process chemicals

FIGURE 18.2

Common tower packings: (a) Raschig rings; (b) metal Pall ring; (c) plastic Pall ring; (d) Berl saddle; (e) ceramic Intalox saddle; (f) plastic Super Intalox saddle; (g) metal Intalox saddle.

Characteristics of Packing

- Bulk density used for mechanical design of tower
- F_p is used in calculations for ΔP and flooding
- f_p is used in estimating H_x and H_y

TABLE 18.1
Characteristics of dumped tower packings^{12,15b,27}

Type	Material	Nominal size, in.	Bulk density, [†] lb/ft ³	Total area, [‡] ft ² /ft ³	Porosity, ε	Packing factors [‡]		
						F_p	f_p	
Raschig rings	Ceramic	$\frac{1}{2}$	55	112	0.64	580	1.52§	
		1	42	58	0.74	155	1.36§	
		$1\frac{1}{2}$	43	37	0.73	95	1.0	
		2	41	28	0.74	65	0.92§	
Pall rings	Metal	1	30	63	0.94	56	1.54	
		$1\frac{1}{2}$	24	39	0.95	40	1.36	
		2	22	31	0.96	27	1.09	
		Plastic	1	5.5	63	0.90	55	1.36
			$1\frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.58§	
		1	45	76	0.68	110	1.36§	
		$1\frac{1}{2}$	40	46	0.71	65	1.07§	
		Intalox saddles	1	46	190	0.71	200	2.27
			1	42	78	0.73	92	1.54
			$1\frac{1}{2}$	39	59	0.76	52	1.18
			2	38	36	0.76	40	1.0
Super Intalox saddles	Ceramic	3	36	28	0.79	22	0.64	
		1	—	—	—	60	1.54	
		2	—	—	—	30	1.0	
		IMTP	1	—	—	0.97	41	1.74
			$1\frac{1}{2}$	—	—	0.98	24	1.37
			2	—	—	0.98	18	1.19
			Hy-Pak	—	—	—	—	
				19	54	0.96	45	1.54
				—	—	—	29	1.36
Tri-Pac	Plastic	2	14	29	0.97	26	1.09	
		1	6.2	85	0.90	28	—	
		2	4.2	48	0.93	16	—	

[†]Bulk density and total area are given per unit volume of column.

[‡]Factor F_p is a pressure drop factor and f_p a relative mass-transfer coefficient. Factor f_p is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7.

[§]Based on $\text{NH}_3\text{-H}_2\text{O}$ data; other factors based on $\text{CO}_2\text{-NaOH}$ data.

Pressure Drop

- Simplified chart to predict when liquid hold up will begin
- Chart is specific to a particular size and design of packing
- Used to determine **Loading**
 - Loading refers to when the amount of liquid held up on the packing begins to increase
- Loading begins where the slope of the curve changes
- Not easily determined with precision

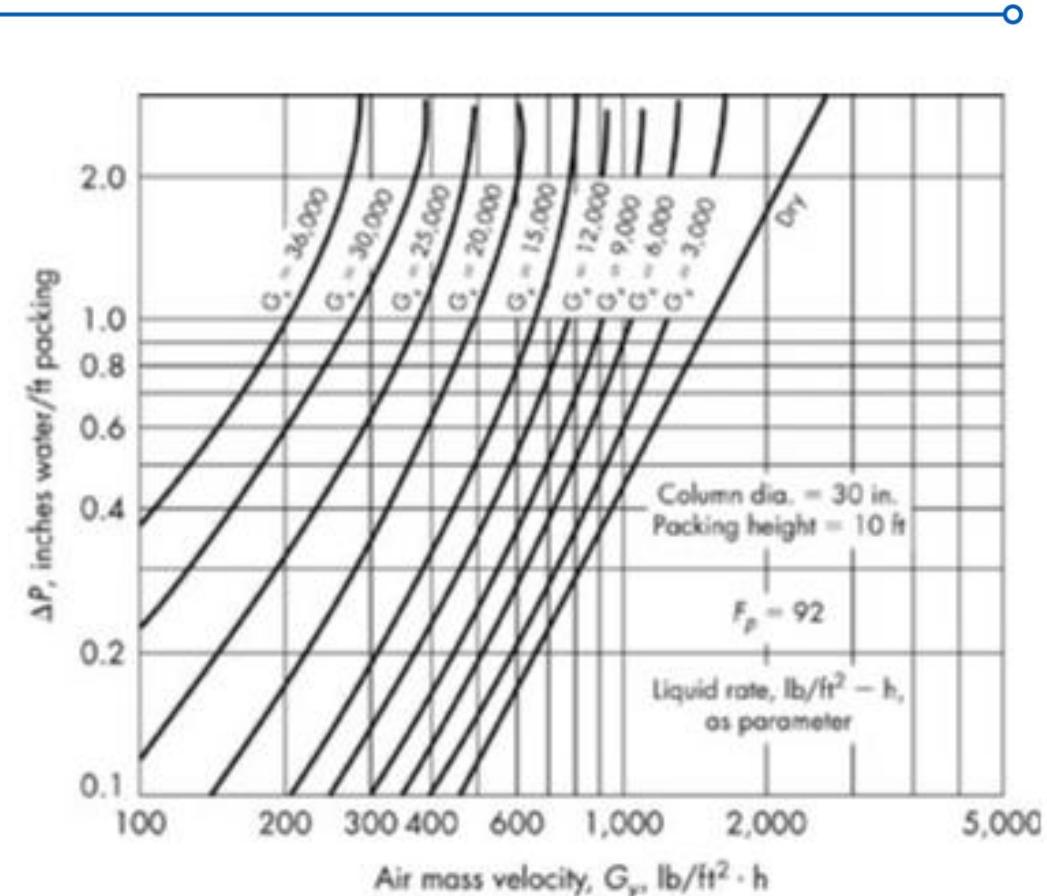


FIGURE 18.4

Pressure drop in a packed tower for air-water system with 1-in. Intalox saddles. (1,000 lb/ft² · h = 1.356 kg/m² · s; 1 in. H₂O/ft = 817 Pa/m)

Flooding

- Flooding refers to when the liquid hold up is so much that the void space in the packing all fills with liquid
- Flooding is **BAD**
 - Liquid becomes continuous and you have low surface area and therefore low mass transfer
- Operating somewhat near flooding conditions is actually good
 - Fully wet the packing and therefore maximize surface area available for mass transfer
- Typical flooding graph is shown
 - It is specific to a particular size and design of packing
 - Calculate the mass velocity of the liquid
 - Use appropriate curve to determine predicted mass velocity of vapor that will lead to flooding

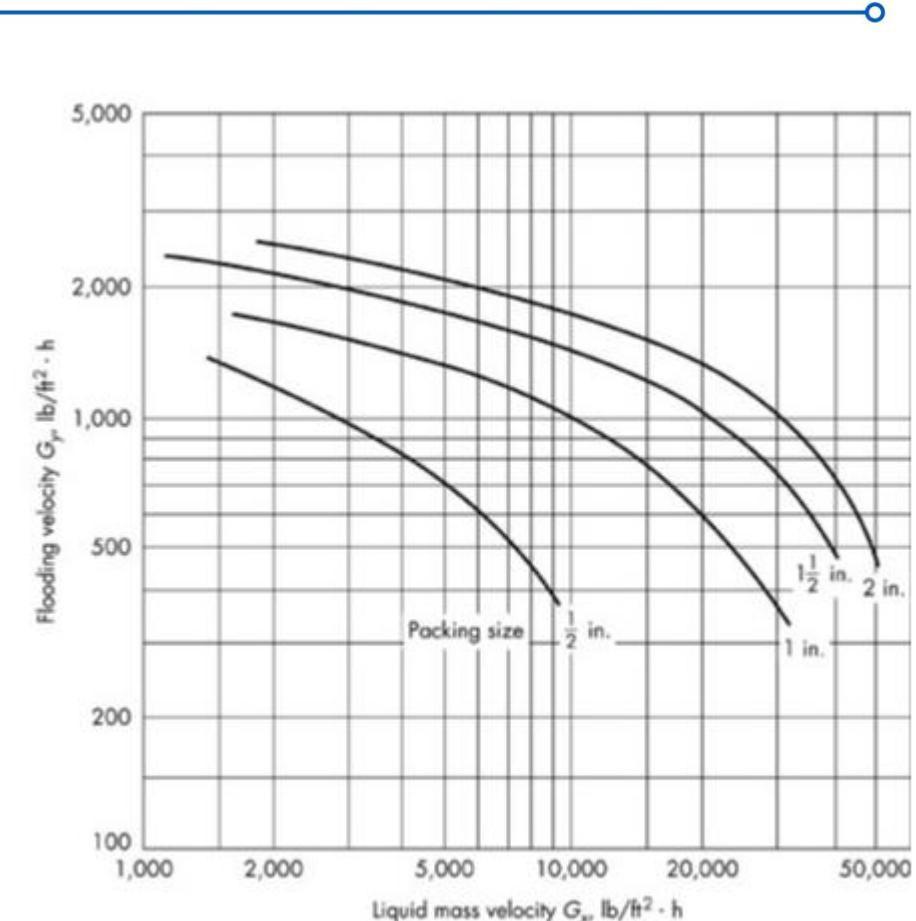


FIGURE 18.5

Flooding velocities in ceramic Intalox saddles, air-water system. ($1,000 \text{ lb/ft}^2 \cdot \text{h} = 1.356 \text{ kg/m}^2 \cdot \text{s}$)

Pressure Drop

- Generalized Correlation for Pressure Drop
- x axis

$$\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$

- y axis

$$\frac{G_y^2 F_p \mu_x^{0.1}}{g_c(\rho_x - \rho_y)\rho_y}$$

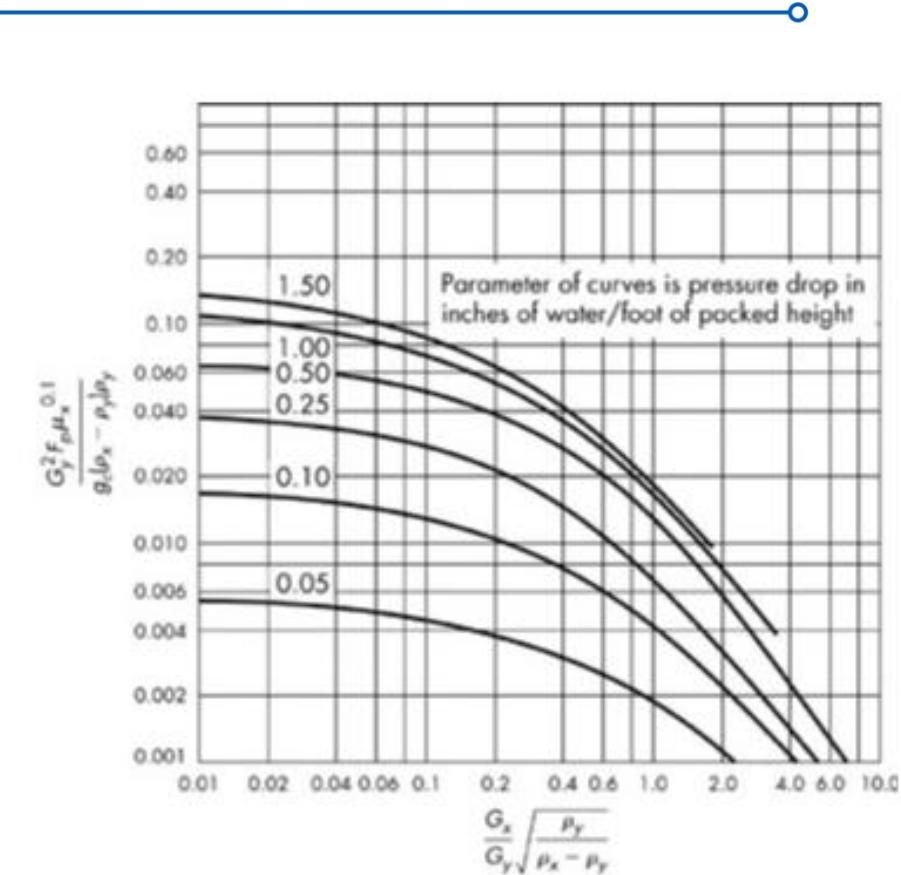


FIGURE 18.6

Generalized correlation for pressure drop in packed columns. (1 in. H₂O/ft = 817 Pa/m) (After Eckert.³)

Alternate Pressure Drop Correlation

- x axis

$$\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x}}$$

- y axis

$$C_s F_p^{0.5} \nu^{0.05}$$

$$C_s = u_0 \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$

- Where u_0 is the superficial velocity

- Volumetric flow rate divided by cross-sectional area of the tower, $S = \frac{\pi D^2}{4}$

- Area ignores fact that packing takes up some of the space

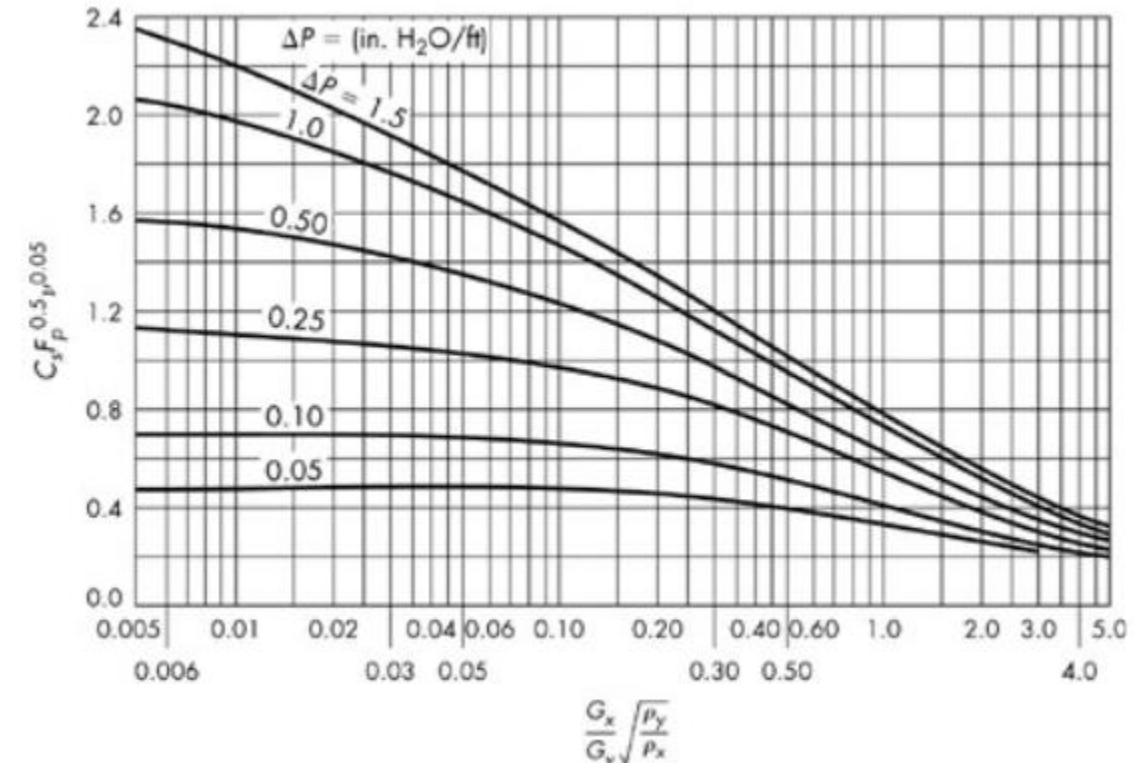
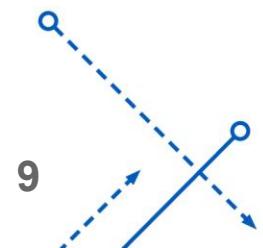


FIGURE 18.7

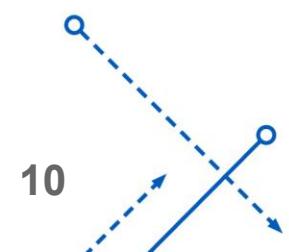
Alternate generalized pressure drop correlation. (1 in. H₂O/ft = 817 Pa/m)

Empirical Flooding Relationship


- Gives us an allowable pressure drop to use for predicting flooding

$$10 < F_p < 60$$

$$\Delta P_{flood} = 0.115 F_p^{0.7} \text{ inches } H_2O/ft$$


$$F_p > 60$$

$$\Delta P_{flood} = 2.0 \text{ inches } H_2O/ft$$

Example 18.1, pp 573 in McCSH

- A tower packed with 1" ceramic Intalox saddles is to be built to treat 25,000 ft³ of entering gas per hour.
- The ammonia content of the entering gas is 2% by volume. Ammonia-free water is used as absorbant.
- The temperature of the entering gas and the water is 68 F (= 528 R) and the pressure is 1 atmosphere.
- The ratio of liquid flow to gas flow is 1.25 lb of liquid per lb of gas.
- If the design pressure drop is 0.5 in H₂O per foot of packing, what should be the mass velocity of the gas and the diameter of the tower?

Example 18.1, pp 573 in McCSH

- Use Figure 18.7
- $\rho_x = 62.3 \frac{\text{lb}_m}{\text{ft}^3}$, the density of water
- ρ_y
 - Average Molecular weight is:
 $0.98 * 28.96 + 0.02 * 17.03 = 28.72$
 - Note that percent by volume is the same as molar percent
 - $\frac{n}{V} = \frac{P}{RT} = \frac{1 \text{ atm}}{0.73024 \frac{\text{ft}^3 \text{ atm}}{\text{lb-mol} \cdot \text{R}} * 528 \text{ R}} = 0.00259 \frac{\text{lb-mol}}{\text{ft}^3}$
- $\rho_y = MW * \frac{n}{V} = 28.72 \frac{\text{lb}_m}{\text{lb-mol}} * 0.00259 \frac{\text{lb-mol}}{\text{ft}^3} = 0.0745 \frac{\text{lb}_m}{\text{ft}^3}$
- $\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x}} = 1.25 \sqrt{\frac{0.0745}{62.3}} = 0.0432$
- For $\Delta P = 0.5'' \text{ wc}$: $C_s F_p^{0.5} \nu^{0.05} = 1.38$

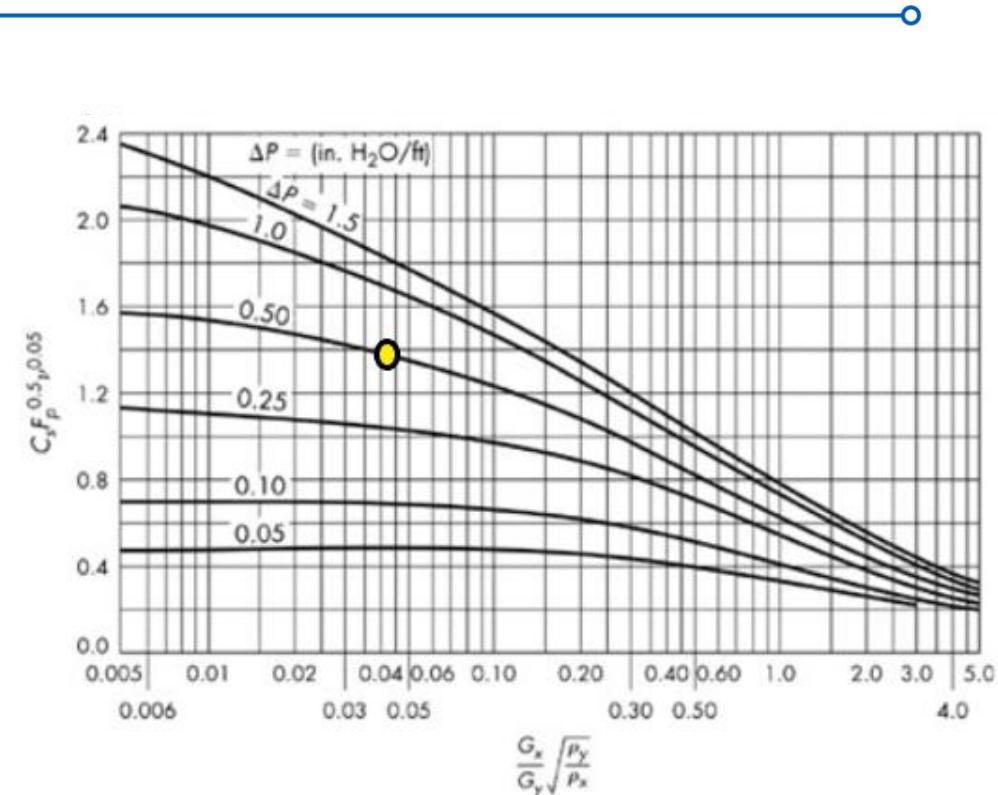


FIGURE 18.7

Alternate generalized pressure drop correlation. (1 in. H₂O/ft = 817 Pa/m)

Example 18.1, pp 573 in McCSH

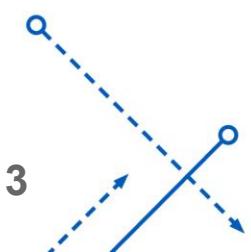

- $C_s F_p^{0.5} \nu^{0.05} = 1.38$
- $F_p^{0.5} = \sqrt{92} = 9.59$
- $\nu^{0.5} = 1^{0.05} = 1$ (kinematic viscosity of water = 1 cS)
- $C_s = \frac{1.38}{9.59 * 1} = 0.144$
- $C_s = u_0 \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$ can be rearranged to $u_0 = C_s \sqrt{\frac{\rho_x - \rho_y}{\rho_y}}$
- $u_0 = 0.144 \sqrt{\frac{62.3 - 0.0745}{0.0745}} = 4.16 \text{ ft/s}$
- $G_y = u_0 * \rho_y = 4.16 \text{ ft/s} * 0.0745 \frac{\text{lb}_m}{\text{ft}^3} * \frac{3600 \text{ s}}{\text{hr}} = 1116 \frac{\text{lb}_m}{\text{ft}^2 \text{ hr}}$
- $G_x = 1.25 * G_y = 1.25 * 1116 \frac{\text{lb}_m}{\text{ft}^2 \text{ hr}} = 1395 \frac{\text{lb}_m}{\text{ft}^2 \text{ hr}}$

TABLE 18.1
Characteristics of dumped tower packings^{12,15b,27}

Type	Material	Nominal size, in.	Bulk density, [†] lb/ft ³	Total area, [†] ft ² /ft ³	Porosity ε	Packing factors [‡] F_p f_p
Raschig rings	Ceramic	1	55	112	0.64	580 1.52§
		1 1/2	42	58	0.74	155 1.36§
		1 1/2	43	37	0.73	95 1.0
		2	41	28	0.74	65 0.92§
Pall rings	Metal	1	30	63	0.94	56 1.54
		1 1/2	24	39	0.95	40 1.36
		2	22	31	0.96	27 1.09
		Plastic	5.5	63	0.90	55 1.36
Berl saddles	Ceramic	1 1/2	4.8	39	0.91	40 1.18
		1	54	142	0.62	240 1.58§
		1	45	76	0.68	110 1.36§
		1 1/2	40	46	0.71	65 1.07§
Intalox saddles	Ceramic	1	46	190	0.71	206 2.27
		1	42	78	0.73	92 1.54
		1 1/2	39	59	0.76	52 1.18
		2	38	36	0.76	40 1.0

Example 18.1, pp 573 in McCSH

- $G_y = 1116 \frac{lb_m}{ft^2 hr}$
- $G_x = 1395 \frac{lb_m}{ft^2 hr}$
- $total\ gas\ mass\ flow = Volumetric\ Flow * \rho_y = 25,000 \frac{ft^3}{hr} * 0.0745 \frac{lb_m}{ft^3} = 1863 \frac{lb_m}{hr}$
- $G_y * Area = total\ gas\ mass\ flow$ $Area = \frac{total\ mass\ flow}{G_y}$
- $Area = S = \frac{1863 \frac{lb_m}{hr}}{1116 \frac{lb_m}{ft^2 hr}} = 1.67 ft^2$
- $D = \left(\frac{4 * S}{\pi}\right)^{1/2} = \left(\frac{4 * 1.67 ft^2}{\pi}\right)^{1/2} = 1.46 ft$

