

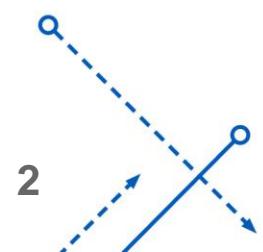
CE407 SEPARATIONS

Lecture 18

Instructor: David Courtemanche

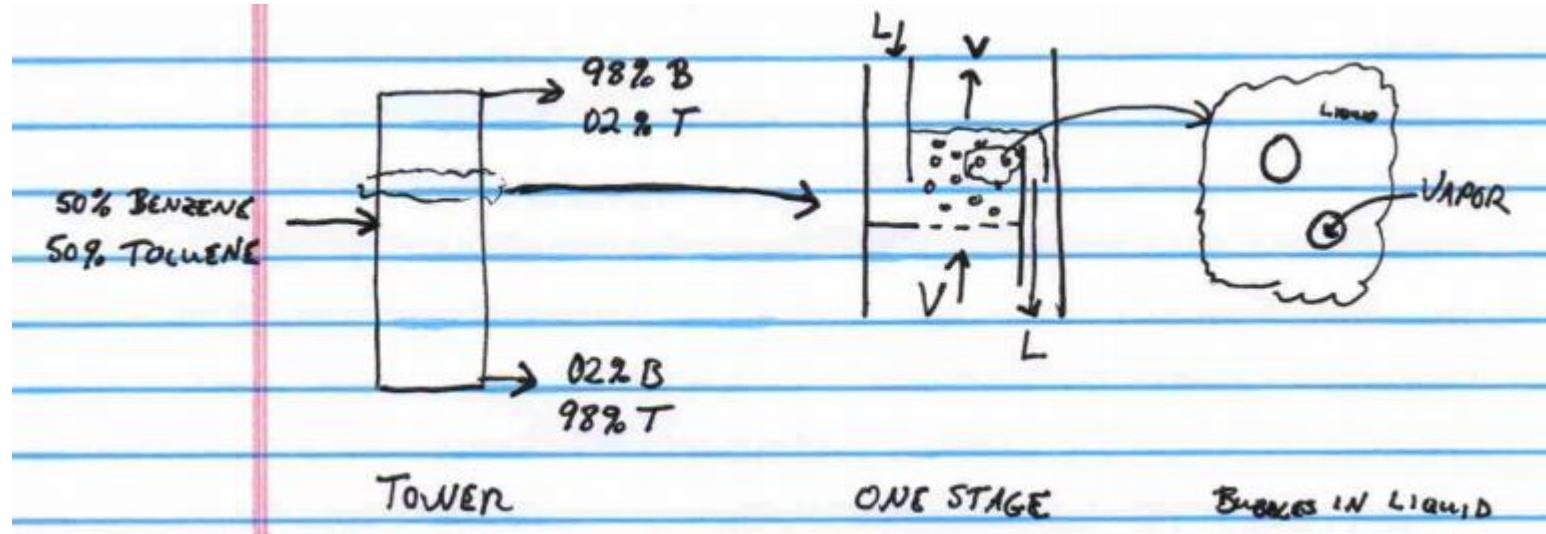
Mass Transfer McSH pp 527-559

- Up to this point we have looked at absorption/stripping/rectification on terms of discrete stages and worked with the principle that each stage had liquid and vapor exiting that stage in equilibrium
 - (or modified that assumption using efficiencies)
- Packed towers do not have discrete stages but rather a continuous array of objects that are wetted by the liquid in order to provide surface area for mass transfer
- Before we can analyze packed towers we need to begin to understand the actual mass transfer occurring between the two phases

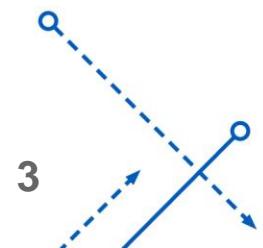


Mass Transfer

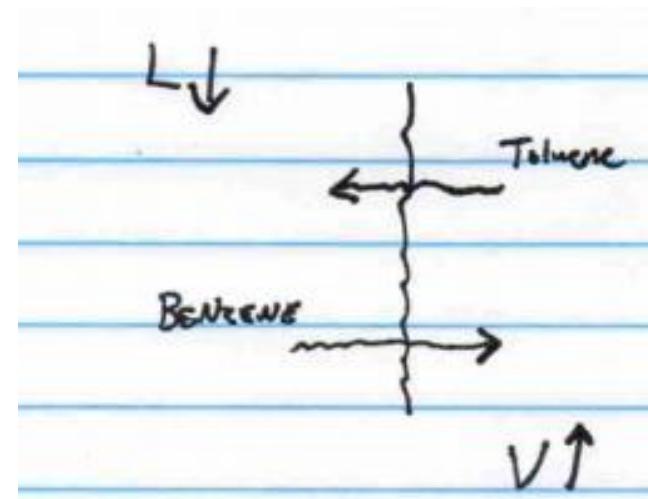
- Expand overall mass balance on tower to equilibrium stages to actual mass transfer



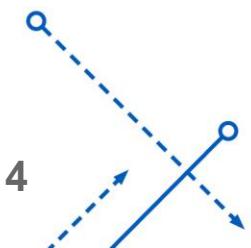
- Mass transfer occurs at the interface between vapor bubbles and continuous liquid
- The interface is distributed across the spherical surface of a very large number of bubbles



Mass Transfer



- Treat the interfacial surface as a plane
 - To an individual molecule the curvature of the bubble is not significant
- A toluene molecule must:
 - Diffuse through the vapor phase to reach the interface
 - Cross the interface (thus condensing)
 - Diffuse into the liquid phase
- A benzene molecule must follow a similar path in the opposite direction



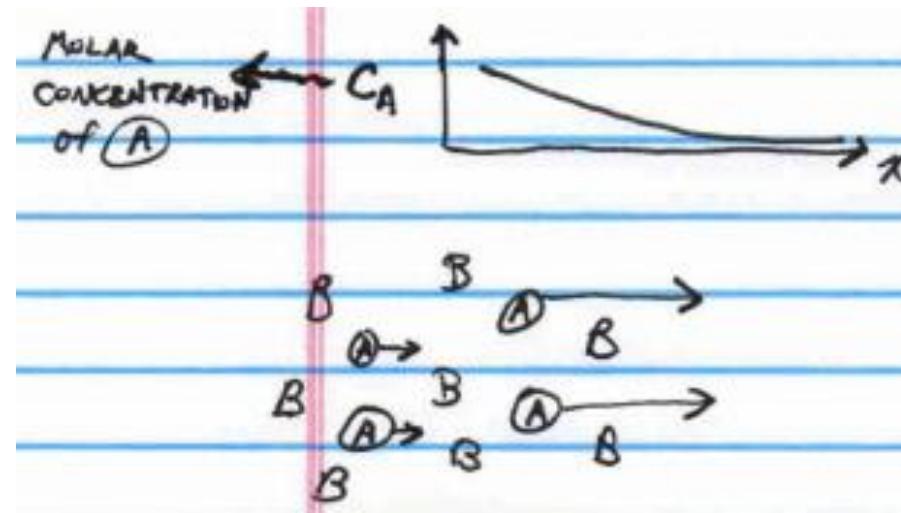
Packed Absorption Tower



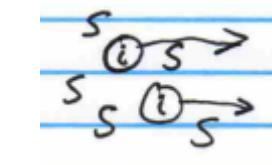
- The liquid wets out the packing in order to provide a large surface area
- Vapor flows up over the wetted packing
- Mass transfer occurs at the vapor/liquid interface
- There are no discrete stages to declare as having reached “equilibrium”
- The mass transfer is occurring in a continuous fashion
- We need to analyze this by looking at the actual diffusion of mass

Calculation of Diffusion Coefficients (CE 318)

- Binary mixture of A and B molecules
- If there is a concentration gradient of A then the A molecules will travel in the direction of lower A concentration



- $$J_A = -D_{AB} \frac{dc_A}{dx}$$
 Fick's Law J_A has units of $\frac{\text{moles}}{\text{area} * \text{time}}$
- For a generic solute, i , in solvent S
$$J_i = -D_i \frac{dc_i}{dx}$$
 - $D_i = D_{iS}$, it is specific to the given solvent



Diffusivity Coefficients - Diffusion in Liquids

- Wilke-Chang eq 17.32 McSH pp 538

$$D_{AB} = 7.4 * 10^{-8} \frac{(\psi_B M_B)^{1/2} T}{\mu V_A^{0.6}} \text{ in units of } \frac{cm^2}{s}$$

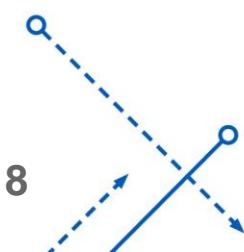
- This approximation is good for small molecules (not polymers or protein molecules)
- This is a fitted approximation to experimental data
- $\psi_B M_B$ is an effective characterization of the molecular weight of solvent, B
 - M_B is the molecular weight of component B
 - ψ_B is related to behavior of solvent B
 - For water the hydrogen bonds make the molecules act as though they are clumps of molecules relative to the solute diffusing through the solvent
 - $\psi_B = 2.26$ for water and is approximately $\psi_B = 1$ for many organic solvents
- T is temperature in Kelvin
- μ is viscosity of the solution in cP, for dilute solutions this can often be approximated as the viscosity of the solvent

Diffusivity Coefficients - Diffusion in Liquids

- V_A is the molar volume of the solute – the molar volume ($\frac{cm^3}{mol}$) of the solute as a LIQUID at its boiling point
- What if the solute is a solid that would decompose before reaching a melting point? Schroeder's Method

$$V_A = (N_C + N_H + N_O + N_N + N_{dbl} - N_{ring}) * 7 \frac{cm^3}{mol}$$

- Where:
 - N_C is the number of carbon atoms
 - N_H is the number of hydrogen atoms
 - N_O is the number of oxygen atoms
 - N_N is the number of nitrogen atoms
 - N_{dbl} is the number of double bonds
 - N_{ring} is the number of separate ring structures (fused rings count as 1)
- If you have data, always use data! Otherwise use the Schroeder method



Diffusivity Coefficients - Diffusion in Vapor Phase

- Chapman-Enskog (kinetic theory of gases) eq 17.28

$$D_{AB} = \frac{0.001858 T^{3/2} [(M_A + M_B)/M_A M_B]^{1/2}}{P \sigma_{AB}^2 \Omega_D}$$

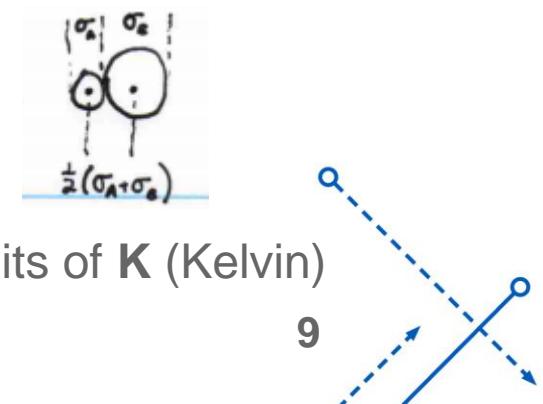
- D_{AB} is in $\frac{cm^2}{s}$
- T is temperature in Kelvin
- M_A is the molecular weight of solute A
- M_B is the molecular weight of solvent B
- P is pressure in atmospheres
- Lennard-Jones parameters, Appendix 19, on pp 1111-1112 of McSH 7th Edition

$$\sigma_{AB} = \frac{1}{2}(\sigma_A + \sigma_B)$$

This is effective collision diameter in Å

$$\epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$$

This is a force constant, tabulated as $\frac{\epsilon}{K_B}$, with units of K (Kelvin)

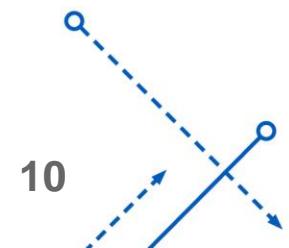


Diffusivity Coefficients - Diffusion in Vapor Phase

- Chapman-Enskog (kinetic theory of gases) eq 17.28

$$D_{AB} = \frac{0.001858 T^{3/2} [(M_A + M_B) / (M_A M_B)]^{1/2}}{P \sigma_{AB}^2 \Omega_D}$$

- Collision Integral $\Omega_D = f(K_B T / \epsilon_{AB})$ where K_B is Boltzmann's Constant
 - This function is tabulated on pp 1111 (Appendix 19)
- Diffusivity depends on temperature as $T^{3/2}$, BUT Ω_D also depends on temperature
- Typically $D_{AB} \propto T^{1.75}$ and depends on pressure as P^{-1}
- If you have D_{AB} at one temperature and pressure for a pair of components you can estimate at your temperature and pressure using $T^{1.75}$ and P^{-1}
- Correlations are a good resort if you do not have data, but USE EXPERIMENTAL DATA IF YOU HAVE IT

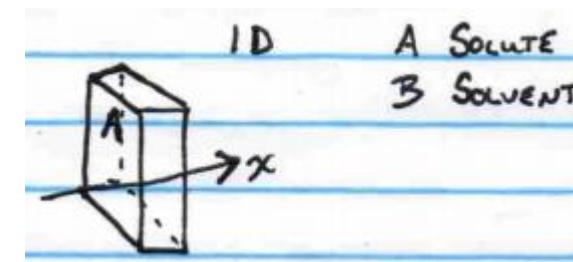


Solute Flux

McSH pp 528-535

- 1D flow – one dimensional in that the flux is independent of the y and z axes
- Eq 17.3a $N_A = u_A c_A$ Flux of A $\frac{\text{mole}}{\text{area} * \text{time}}$ of A passing through “window”
- Eq 17.3b $N_B = u_B c_B$ Flux of B $\frac{\text{mole}}{\text{area} * \text{time}}$ of B passing through “window”
- u_i is the average speed of component i molecules
- c_i is the concentration of component i

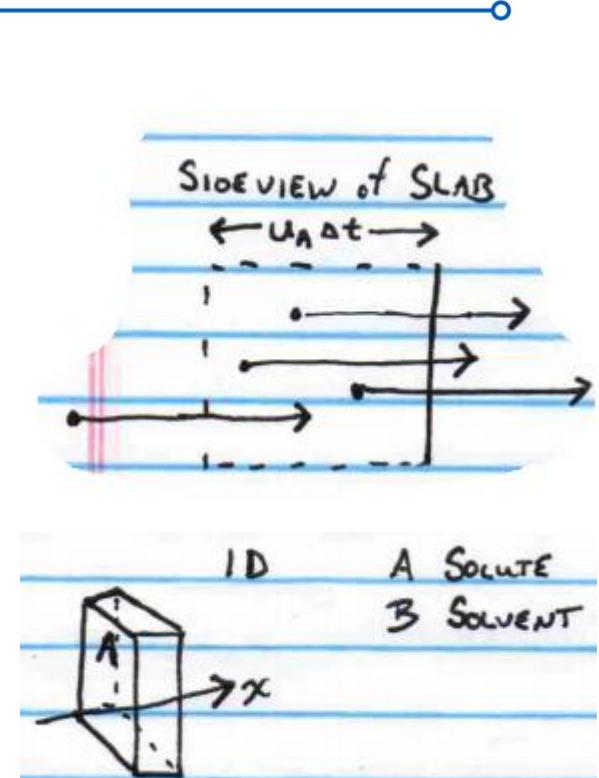
$$N_i = u_i c_i$$



Solute Flux

Side view of the slab, consider a time increment Δt

- An A molecule will travel the distance $u_A \Delta t$
- Any molecules further to the left of the plane we are considering by a distance greater than $u_A \Delta t$ will NOT cross the plane
- Any molecule that is within a distance of $u_A \Delta t$ WILL cross the plane in the time period Δt
- This defines a volume of $u_A \Delta t A$ that contains all of the molecules that will cross the plane. (A is the cross-sectional area of the control volume.)
- The number of molecules within that volume is $u_A \Delta t A c_A$
 - c_A is $\frac{\text{moles}}{\text{volume}}$
- This is the number of moles that will cross the plane during time Δt
- $N_A = \frac{\text{moles}}{\text{area*time}}$ crossing the plane
- $N_A = \frac{u_A \Delta t A c_A}{A \Delta t} = u_A c_A$ eq 17.3a

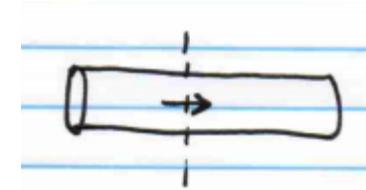


Diffusion

- When we talk about diffusion we are talking about the motion of a component relative to the mixture that it is in.

Mixture Flowing through a pipe

- We could measure the number of molecules of A passing a plane/(area*time)
- That is NOT diffusive flux
- Much of that flow of component A is from motion due to the flow of the mixture
- We want to determine motion of A relative to the motion of the mixture



Diffusion refers to the motion of a constituent in a mixture relative to the volume average velocity of the mixture

Diffusive Flux

- If molar density ($\frac{\text{total moles}}{\text{volume}}$) is constant (or nearly constant) then the mole average velocity and volume average velocity are the same
- A derivation based on mole average velocity is more straightforward
- The results are the same for mole average as they are for volume average
- $\bar{U} = x_A u_A + x_B u_B$ this is mole average velocity (U_o in textbook)

Flux relative to average motion of mixture is Diffusive Flux

$$J_A = (u_A - \bar{U})c_A \frac{\text{moles}}{\text{area} \cdot \text{time}}$$

$$J_B = (u_B - \bar{U})c_B \frac{\text{moles}}{\text{area} \cdot \text{time}}$$

- J is the symbol for diffusive flux
- $J_A + J_B = u_A c_A + u_B c_B - \bar{U}(c_A + c_B)$
 $= u_A x_A c + u_B x_B c - \bar{U}c = (u_A x_A + u_B x_B)c - \bar{U}c$
 $= \bar{U}c - \bar{U}c = 0$
- The motion of (A+B) relative to the average velocity of the mixture is zero – which makes sense

$$c = \rho_M = \frac{\text{total moles}}{\text{volume}} = \text{constant}$$
$$c_A + c_B = x_A c + x_B c = (x_A + x_B)c = c$$

Flux

$$N_A = u_A c_A = \bar{U} c_A + u_A c_A - \bar{U} c_A$$

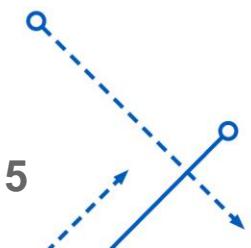
Overall flux of A eq 17.3a we just added and subtracted $\bar{U} c_A$

$$N_A = \bar{U} c_A + (u_A - \bar{U}) c_A$$

$$N_A = \bar{U} c_A + J_A = \bar{U} c_A - D_{AB} \frac{dc_A}{dx}$$

convective flux Diffusive flux definition Fick's Law

- Convective flux is the flux due to the overall flow of liquid as a whole
- D_{AB} is the diffusion coefficient of A diffusing through B



Flux

$$N_A = \bar{U}c_A - D_{AB} \frac{dc_A}{dx}$$

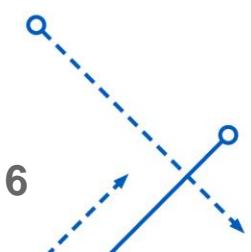
$$N_B = \bar{U}c_B - D_{BA} \frac{dc_B}{dx}$$

- Note that diffusivity in second equation is D_{BA} , for B diffusing through A
- Textbook uses “b” as the direction, not “x”
- One might be interested in either flow
- $N = N_A + N_B = u_A c_A + u_B c_B$ “the flux of everything”

$$= u_A x_A c + u_B x_B c$$

$$= (u_A x_A + u_B x_B) c$$

$$= \bar{U}c$$



Flux

$$N_A = \bar{U}c_A - D_{AB} \frac{dc_A}{dx}$$
$$= \bar{U}c x_A - D_{AB} \frac{d(c x_A)}{dx}$$

From previous slide $N = N_A + N_B = \bar{U}c$

c can be taken out of derivative because it is constant

Note that x_A is a mole fraction while x in the denominator is just the x axis, a direction

$$N_A = (N_A + N_B)x_A - D_{AB} c \frac{dx_A}{dx}$$

- Similar steps for B lead to

$$N_A = (N_A + N_B)x_A - D_{AB} c \frac{dx_A}{dx}$$

$$N_B = (N_A + N_B)x_B - D_{BA} c \frac{dx_B}{dx}$$

Reciprocal Relation of D_{AB} and D_{BA}

$$J_A = -D_{AB} \frac{dc_A}{dx} \quad J_B = -D_{BA} \frac{dc_B}{dx}$$

- We know that $J_A + J_B = 0$ therefore $J_A = -J_B$
- Also $c_A + c_B = c = \text{constant}$

$$\frac{dc_A}{dx} + \frac{dc_B}{dx} = \frac{dc}{dx} = 0$$

$$\frac{dc_A}{dx} = -\frac{dc_B}{dx}$$

Reciprocal Relation of D_{AB} and D_{BA}

$$\frac{dc_A}{dx} = -\frac{dc_B}{dx} \quad \text{and} \quad J_A = -J_B$$

$$J_B = -D_{BA} \frac{dc_B}{dx}$$

- Making substitutions

$$J_B = -J_A = -D_{BA} \left(-\frac{dc_A}{dx} \right) \quad \text{substitute } \frac{dc_A}{dx} = -\frac{dc_B}{dx}$$

$$J_A = -D_{BA} \left(\frac{dc_A}{dx} \right) \quad \text{drop a negative sign on each side}$$

- But, by definition

$$J_A = -D_{AB} \left(\frac{dc_A}{dx} \right)$$

- Therefore:

$$D_{BA} = D_{AB}$$

eq 17.11

