CE407 SEPARATIONS

Lecture 17b

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

- A feed stream (flow rate = 1000 kg/hr) with composition 30 mass % acetic acid (solute, C) and 70 mass % isopropyl ether (diluent, A) is to be contacted with water (solvent, B) in a countercurrent liquid extraction battery. Entering water is pure. The exiting raffinate should contain 8 mass % acetic acid (C) and 92 mass % ether (A) on a water(B)-free basis.
 - What is the minimum flow rate $(V_{N+1})_{min}$ of entering water required to achieve the desired composition of the exiting raffinate (corresponding to an infinite number of stages)?
 - Suppose 1.5 times the minimum flow rate of entering water is used $V_{N+1} = 1.5 * (V_{N+1})_{min}$:
 - Determine

The composition of the exiting extract The flow rate of the exiting raffinate The required number of ideal stages

Equilibrium data for the ternary system isopropyl ether (A) – water (B) – acetic acid (C) are as follows:

Ether Rich		Wat	er Rich	
XB	Xc		YB	Yc
0.01	0.02	0).92	0.06
0.02	0.05	0).84	0.13
0.04	0.11	0).71	0.26
0.07	0.215	0).59	0.37
0.08	0.26	0).53	0.41
0.10	0.30	0).47	0.44
0.13	0.34	0).40	0.455
0.17	0.38	0).34	0.46
0.21	0.42	0).27	0.45
0.24	0.44	0).24	0.44

Multi-Stage Countercurrent Extraction Treybal pp. 452 Fig 1040

Minimum Entering Solvent Flow

1 hour basis

A = Diluent, isopropyl ether B = Solvent, Water C = Solute, acetic acid

- The actual raffinate composition is found by drawing a line from L'_N to the Pure Solvent Point. The point where the line crosses the two-phase boundary give the composition of L_N as $(x_B, x_C) = (0.03, 0.078)$.
- Draw a line from V_{N+1} to L_N and extend it well past to the left. Extend each tie line that passes between L_0 and L_N . In this case the relative slopes of the tie lines is such that the uppermost tie line is NOT the one that intersects the line $\overline{L_N V_{N+1}}$ furthest to the left. The next lower tie line (shown in green) denotes the location of Δ_{min} .

• Now extend a line from Δ_{min} to L_0 and on to the extract side of the two phase boundary. This determines the location of $(V_1)_{min} = (y_B, y_C) = (0.34, 0.46)$. Oftentimes this line is a tie line, but in this case it is not exactly.

• The lines $\overline{L_N V_1}$ and $\overline{L_0 V_{N+1}}$ intersect at the point $M = (y_B, y_C) = (0.17, 0.25)$.

 $x_M = 0.25$

 $x_R = x_0 = 0.30$ $y_E = y_{N+1} = 0$

Solute Balance

•
$$L_0 x_0 + V_{N+1} y_{N+1} = (L_0 + V_{N+1}) x_M$$

•
$$V_{N+1} = L_0 \frac{x_0 - x_M}{x_M - y_{N+1}}$$

•
$$V_{N+1} = 1000 * \frac{0.30 - 0.25}{0.25 - 0} = 200 \, kg/hr$$

Solvent Balance

•
$$L_0 x_{B0} + V_{N+1} y_{BN+1} = (L_0 + V_{N+1}) x_{BM}$$

•
$$V_{N+1} = L_0 \frac{x_{B0} - x_{BM}}{x_{BM} - y_{BN+1}}$$

•
$$V_{N+1} = 1000 * \frac{0 - 0.17}{0.17 - 1} = 204.8 \, kg/hr$$

