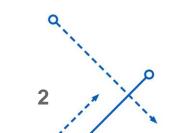
CE407 SEPARATIONS

Lecture 16b

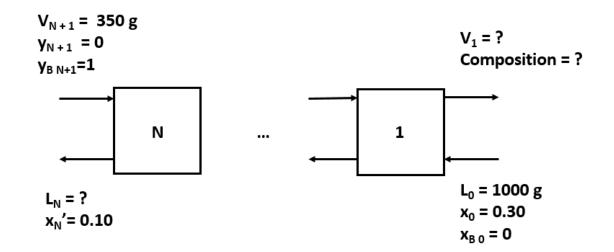
Instructor: David Courtemanche

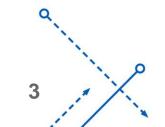

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Multi-Stage Cross Current LLE

- 1000 g/sec of a feed solution with a composition of 30 mass% acetic acid (solute, C) and 70 mass % isopropyl ether (diluent, A) is to be contacted with water (solvent, B) in a countercurrent extraction battery. The acid concentration in the ether-rich (raffinate) phase is to be reduced to 10 mass % on a water-free basis (i.e. the exiting raffinate should contain acid and ether in the proportion acid/ether = 10/90). The water enters pure at the rate of 350 g/s.
 - a) What will be the compositions and flow rates of the exiting raffinate and extract.
 - b) How many ideal stages are required to perform the desired separation
- Equilibrium data for the ternary system isopropyl ether (A) water (B) acetic acid (C) are as follows:

Ether Rich		Water Rich	
X _B	x _c	У _В	У _С
0.01	0.01	0.96	0.03
0.01	0.02	0.92	0.06
0.02	0.05	0.84	0.13
0.04	0.11	0.71	0.26
0.07	0.22	0.59	0.37
0.11	0.31	0.45	0.44
0.15	0.36	0.37	0.46

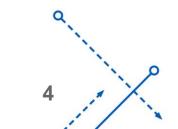

Multi-Stage Cross Current LLE

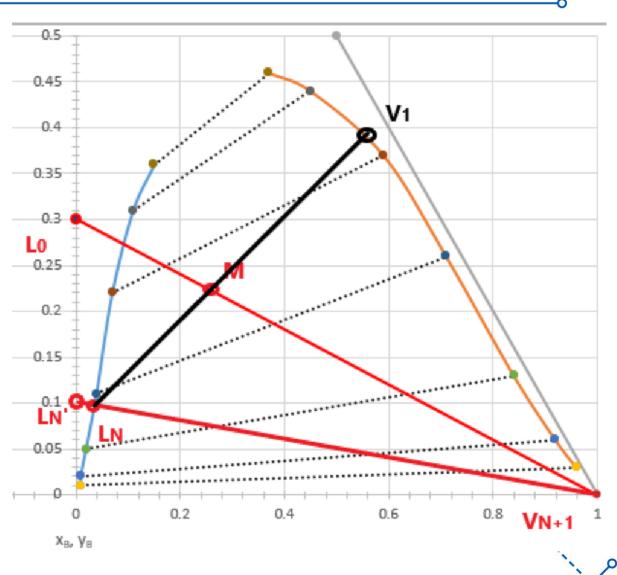

1 second basis

A = Diluent, isopropyl ether

B = Solvent, Water

C = Solute, acetic acid

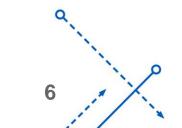



- Start by calculating the fictitious mixture point
- M = the rate at which liquid enters the system = $L_0 + V_{N+1} = 1350 g$

•
$$x_M = (x_c)_M = \frac{x_0 L_0 + y_{N+1} V_{N+1}}{L_0 + V_{N+1}}$$

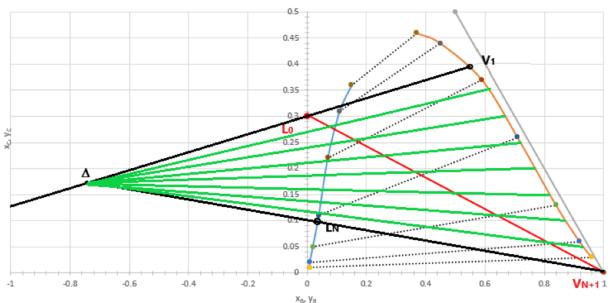
• $x_M = (x_c)_M = \frac{0.30 \times 1000 + 0 \times 350}{1000 + 350} = 0.22$

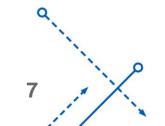
- Locate points $L_0 = (0, 0.30)$ and $V_{N+1} = (1, 0)$
- Locate *M* as a point on the line $\overline{L_0 V_{N+1}}$ where $x_M = (x_c)_M = 0.22$
- L_N is located by positioning $L'_N = (0, 0, 1)$ and pure solvent, (1, 0):
 - Where this line crosses the raffinate side of the twophase boundary is L_N is $x_C = 0.095$
- We can extend the line $\overline{L_N V_M}$ to reach the two-phase boundary in order to locate V_1
- $(y_c)_1 = 0.39$
- Raffinate Composition: $L_N = (x_B, x_C) = [0.04, 0.095]$
- Extract Composition: $V_1 = (y_B, y_C) = [0.56, 0.39]$



- Working with Solute Mass Fractions:
- $\frac{E}{R} = \frac{x_M x_R}{y_E x_M}$
- $\frac{E}{R} = \frac{0.22 0.095}{0.39 0.22} = 0.74$

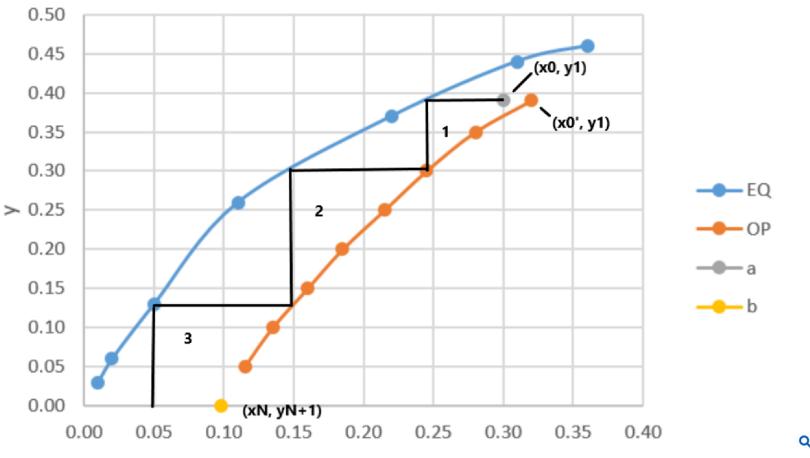
•
$$R = \frac{M}{1 + \frac{E}{R}} = \frac{1000 + 350}{1 + 0.74} = 775.9 \, g/s$$


• E = M - R = 1350 - 775.9 = 574.1 g/s



- Extend a line from V_1 through L_0 and a line from V_{N+1} through L_N . Their intersection is the point Δ
- The point Δ is then extended multiple times. The values of (x_c, y_c) , or the mass fraction of solute are located where a given line crosses the two-phase boundary on the raffinate and on the extract sides.
- Equilibrium curve is generated from taking x_C from the ether rich phase as x and y_c from the water rich side as y

Ether Rich		Water Rich	
Х _В	X _C	У _В	У _С
0.01	0.01	0.96	0.03
0.01	0.02	0.92	0.06
0.02	0.05	0.84	0.13
0.04	0.11	0.71	0.26
0.07	0.22	0.59	0.37
0.11	0.31	0.45	0.44
0.15	0.36	0.37	0.46



X	У
0.115	0.05
0.135	0.10
0.160	0.15
0.185	0.20
0.215	0.25
0.245	0.30
0.280	0.35
0.320	0.39

- There are 2.5 ideal stages
- Round up to 3 ideal stages

8