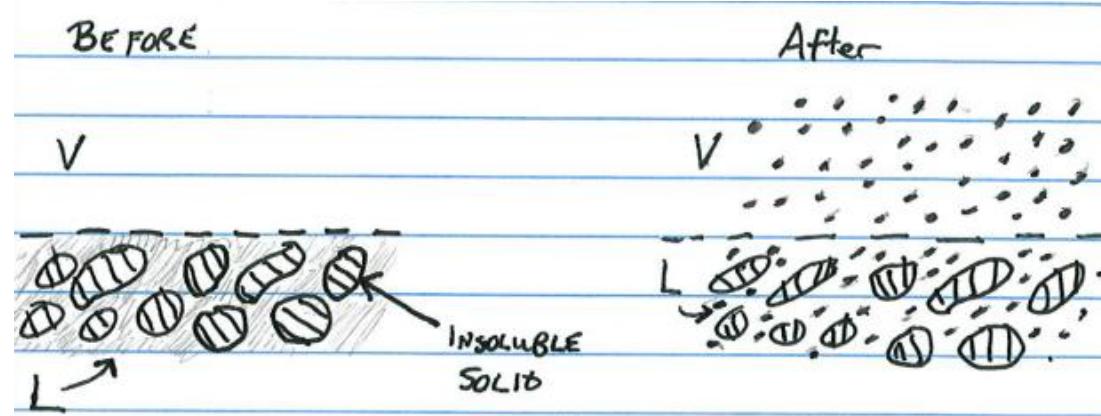
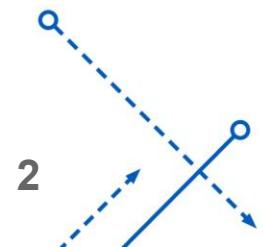


CE407 SEPARATIONS


Lecture 13

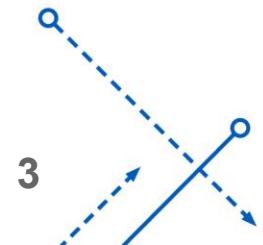
Instructor: David Courtemanche



Leaching McSH 764-772

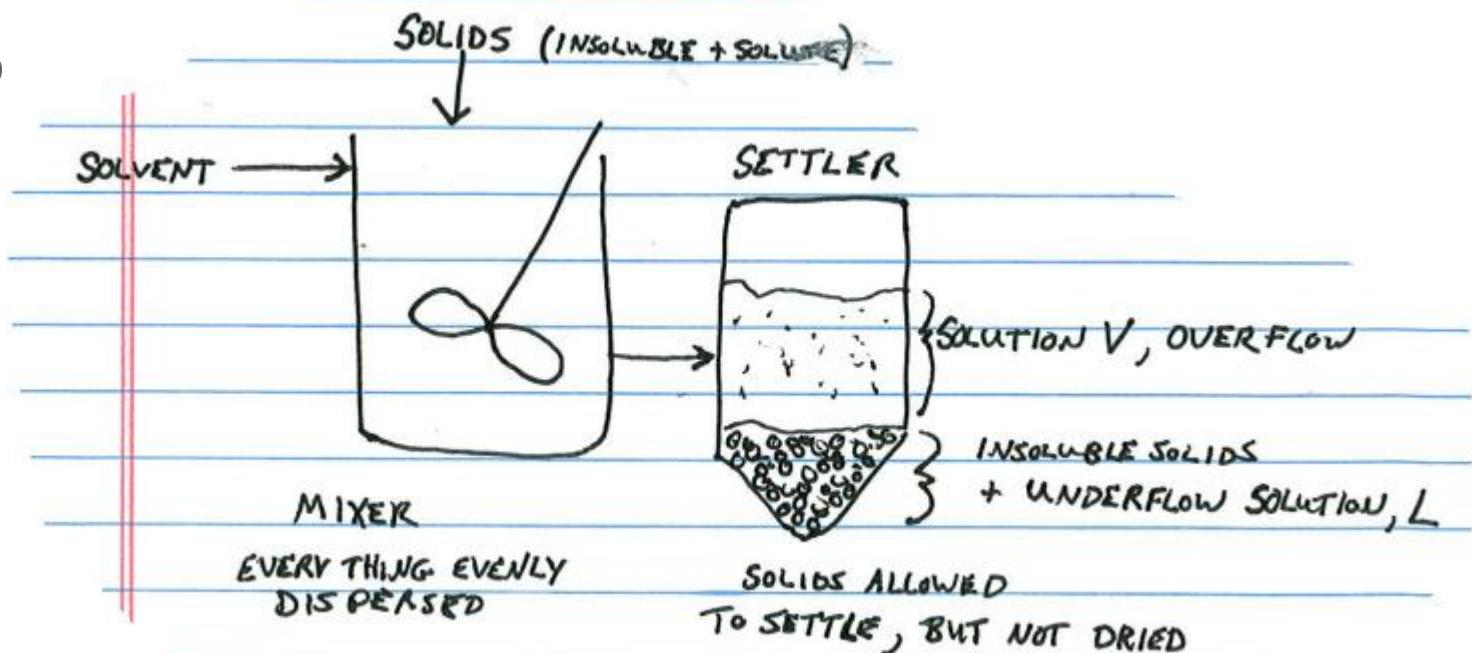
- Using a liquid solvent to dissolve soluble matter from its mixture with an insoluble solid

- L** and **V** are both liquid phases – no vapor!
 - L** may be a solid *before* contact with solvent
- V phase**: Liquid solution that flows out a solid free solution - “Overflow”
- L phase**: Liquid solution that is wetting the surface and/or pores of insoluble solid – “Underflow”
 - The insoluble solid is NOT part of **L**
- L** and **V** are composed of Solvent and Solute

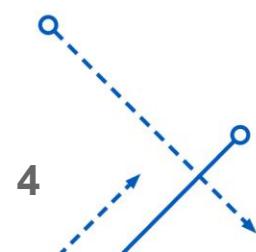


Leaching

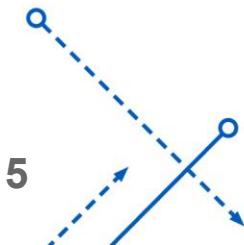
- **Solute**: the material we are trying to remove from the insoluble solid
- **Solvent**: them material we are using to dissolve the solute


Making Tea

- We start with tea leaves:
 - They are composed of insoluble plant fiber (the insoluble solid) and Soluble material that goes into the tea (solute)
- We dip the tea bag into hot water (solvent)
- When we remove the tea bag:
 - Tea in the mug is a solution, **V**, Overflow
 - The tea leaves are wet and have tea solution clinging to them
 - This liquid is the Underflow, **L**
 - The insoluble plant fiber remains in the tea bag and their mass is unchanged – **Insoluble Solid**


Leaching

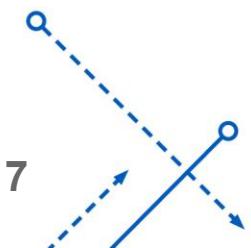
- Solid and Solvent are introduced into mixer
- L phase may 100% solid before introduction of solvent
- During mixing the solid is suspended in the solution and evenly dispersed throughout the vessel
- Suspension is transferred to settling vessel and solids settle out
- Equilibrium Condition
 - Assumes good mixing of vessel contents
 - All one phase (no immiscibility)


- y is concentration in V phase
- x is concentration in L phase

$$y = x$$

Units used in Leaching

- In leaching you don't have nice "Clean" chemicals
 - You may have
 - Ore
 - Fish Guts
 - Other odds and ends
 - Defining a molecular weight can be a challenge for both the insoluble solids and the solute
 - Solute may be an oil with a distribution of various components
 - Therefore Leaching is typically worked out in MASS units (not molar)
 - Can define concentration in two different ways:
 - In terms of Solution Flow
 - **L** and **V**: Mass flow of SOLUTION
 - **x** and **y**: mass fraction of solute
 - In terms of Solvent Flow
 - **L** and **V**: Mass flow of SOLVENT
 - **x** and **y**: mass ratio of solute to solvent
- $$\frac{\text{mass of solute}}{\text{mass of solution}}$$
- $$\frac{\text{mass of solute}}{\text{mass of solvent}}$$



Units used in Leaching

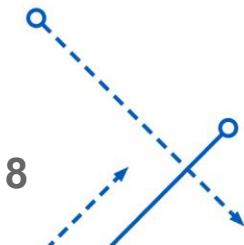
- In Absorption/Stripping/Distillation we work in molar flow because that is what is applicable to Equilibrium calculations
- In leaching the equilibrium relationship is $x = y$
- We won't be doing equilibrium calculations (and defining MW is a challenge...)

- Mass of solute = $L * x$ or $V * y$
 - This is true no matter which convention you choose, but you **absolutely** have to use the same convention throughout the calculation!

Leaching

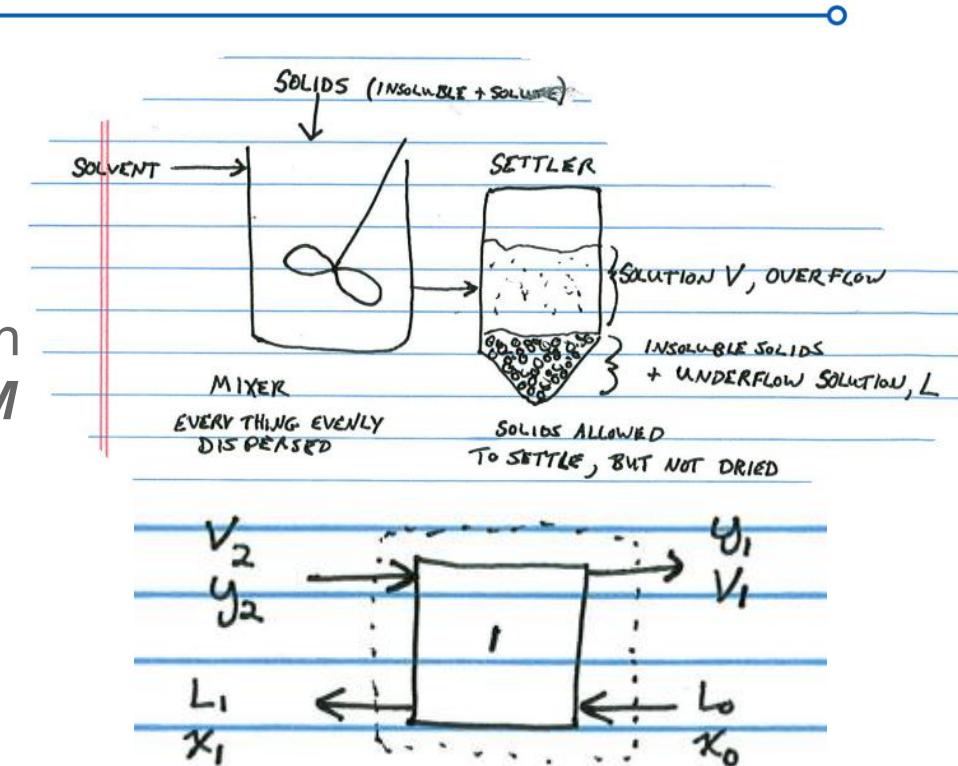
- The insoluble material passes through the equipment unchanged
 - Mass flow of insoluble will be constant throughout the problem
- How much liquid clings to the surface and pores of the solid passing through? (This is the underflow, L)
- This would be extremely difficult to predict theoretically
 - It is dependent upon:
 - Surface tension
 - Viscosity
 - Density
 - Surface roughness / pore size of insoluble solid
 - Etc.
- Data is typically determined experimentally

Underflow

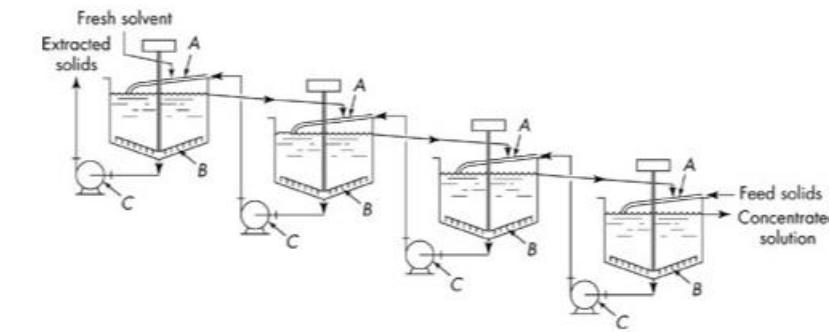
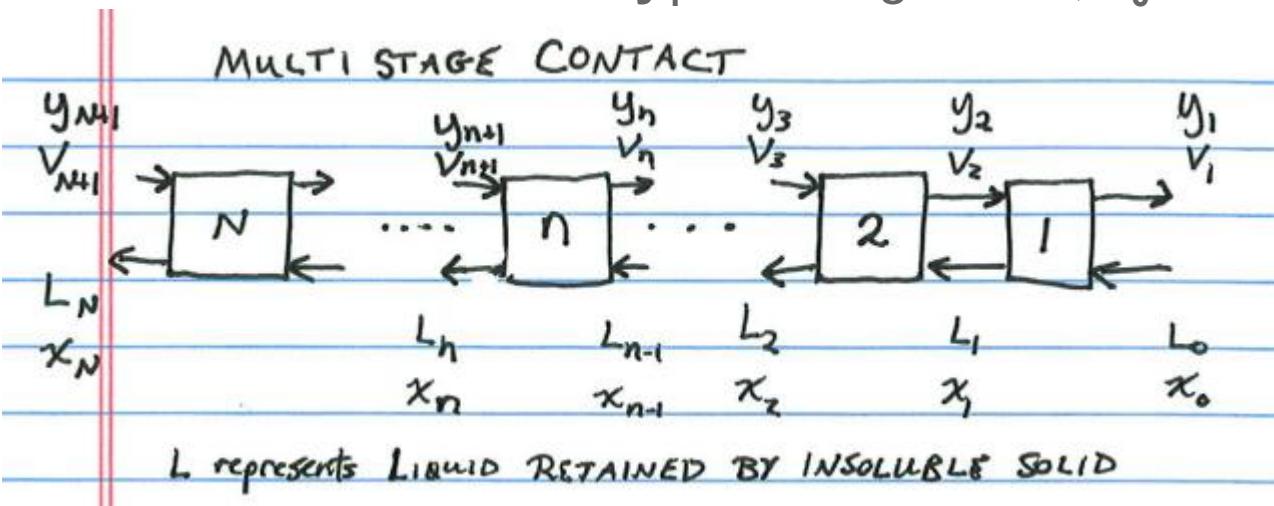

- Experimental data may be expressed as:
- *mass of solution/mass of insoluble solid*

or as

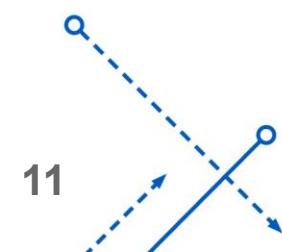
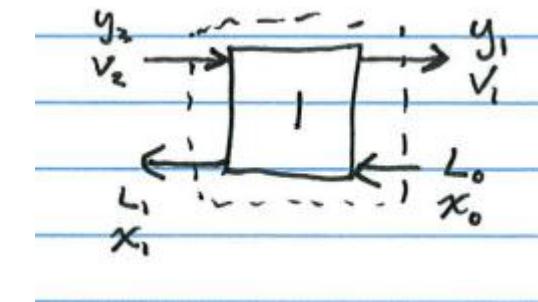
- *mass of solvent/mass of insoluble solid*
- Example:


$x = y = \frac{\text{kg oil}}{\text{kg solution}}$	$\frac{\text{kg solution retained}}{\text{kg insoluble solid}}$
0.0	0.0500
0.1	0.0505
0.2	0.0515

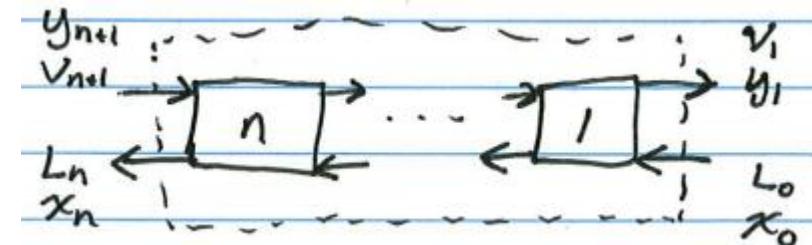
- The concentration of the solution affects the viscosity, surface tension, etc and therefore different amounts of solution will cling to the solid
- This data will be very specific to the type of insoluble solid, temperature, etc



Leaching

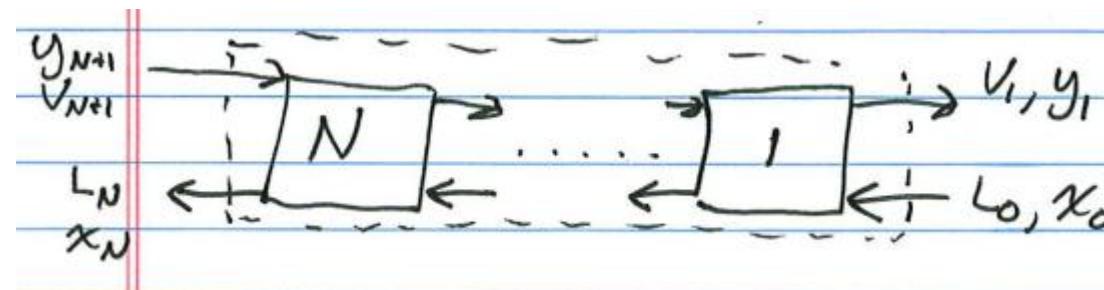
- The equipment shown here
- can be represented like this
- Note: the streams and concentrations are represented with subscripts that indicate what stage they have come **FROM**
 - This is the same as we are used to from distillation
- Review example 2 from “Leaching More Examples”



Leaching: Multi-Stage Contact

- In order to maximize the amount of solute recovered we use multiple stages
- In this diagram the left hand side is the “clean” side and the RHS is the “dirty” side
- Incoming Solvent stream may be fresh, with $y_{N+1} = 0$ or it may be recycled
- V_1 often referred to as “Strong Solution”
- Advantage of countercurrent:
 - On LHS where x_N is relatively small, y_{N+1} is also at its lowest, providing driving force
 - On RHS where y_1 is at its greatest, x_0 is at its largest, so there is still driving force


Control Volumes

- There are three control volumes that will prove to be of particular use
- Control volume around stage 1
- Often times raw material coming in has no solvent at all
- If L is pure solute, $x_0 = 1$
- L will pick up a very large amount of solvent in this stage
- L_0 and L_1 will be very different



Control Volumes

- Control Volume from beginning of battery up to and including generic stage n

- Control Volume around entire battery

How Many Stages Do We Need?

- We can analyze in a similar manner to absorption or distillation
 - Generate an operating line
 - Generate EQ curve
 - Step off stages
- The equilibrium curve is simply $x_n = y_n$
- However, operating line is very curved and we will need to generate it

Operating Line

- First gather your starting information
 - Feed composition
 - Mass of inert
 - Mass of solute
 - Mass of solvent
 - Fresh Solvent
 - V_{N+1} is usually unknown
 - y_{N+1} will be given
 - Strong Solution (V_1 stream)
 - % recovery of solute
 - Relationship between x_n and amount of solution retained

Operating Line – Steps

1. Propagate the information given

- i.e if it is stated that a 90% recovery of the 0.5 ton of solute
 - 0.45 tons are in the V_1 stream and 0.05 tons are in L_N stream
 - If given a mass fraction in strong solution then you can calculate the solvent flow and get V_1

2. In general the lack of constant flows prevents one from jumping into the mass balances

- You need to sort out L_N by trial and error
- Guess a value for x_N
- From step 1 we know how much solute there is
- $x_N = \frac{\text{mass solute}_N}{\text{mass solution}_N}$
- Suppose 100 kg of inert and mass balance indicated 1 kg of solute exits stage N
 - **Note: this is a different case than the one listed for Step 1!**
- Guess $x_N = 0.1$ Then $L_N = 0.0505 \times 100 \text{ kg solid} = 5.05 \text{ kg solution}$ (Value of 0.0505 is read off of table)
- Now $x_N = \frac{1 \text{ kg solute}}{5.05 \text{ kg solution}} = 0.198 \neq 0.1$ The guess of $x_N = 0.1$ is wrong because it doesn't add up
- Guess $x_N = 0.19$ Then $L_N = 0.0514 \times 100 \text{ kg} = 5.14 \text{ kg solution}$ (Value of 0.0514 is interpolated from table)
- Now $x_N = \frac{1 \text{ kg solute}}{5.14 \text{ kg solution}} = 0.195$ The guess of $x_N = 0.195$ not too bad
- The x_N leads to a value for amount of solution. The known amount of solute and that calculated amount of solution must lead to a concentration that matches the guess...

Operating Line – Steps

3. Perform Solute and Solution Balance across the entire battery

$$\text{In} = \text{Out}$$

Solution

$$V_{N+1} + L_0 = V_1 + L_N$$

Solute

$$y_{N+1}V_{N+1} + x_0L_0 = y_1V_1 + x_NL_N$$

- We know y_1 , y_{N+1} , and x_0L_0 from problem statement
- We calculated V_1 earlier
- We just solved x_N and L_N with the iteration
- That just leaves us able to solve for V_{N+1}

4. Do Solute and Solution balance around stage 1

$$\text{In} = \text{Out}$$

Solution

$$V_2 + L_0 = V_1 + L_1$$

Solute

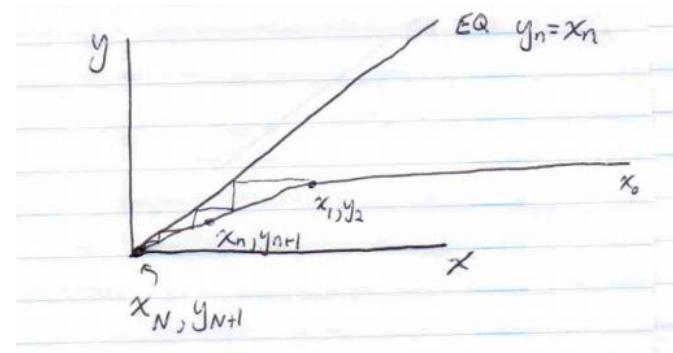
$$y_2V_2 + x_0L_0 = y_1V_1 + x_1L_1$$

- Because we know that $y_1 = x_1$ we can obtain y_2 we now have point (x_1, y_2) for our operating line

Operating Line – Steps

5. Because Operating Line is curved we need at least one intermediate point
 - Choose stage n such that x_n is between x_1 and x_N
 - Make x_n a value that is on the chart. Do balances from start of battery through stage n

$$\text{In} = \text{Out}$$


Solution

$$V_{n+1} + L_0 = V_1 + L_n$$

Solute

$$y_{n+1} V_{n+1} + x_0 L_0 = y_1 V_1 + x_n L_n$$

- Because we know x_n we can calculate L_n from retention chart value and mass of inert
 - We can now obtain y_{n+1} and therefore (x_n, y_{n+1})
6. Now that we have three points on OP Line we can do McCabe-Thiele

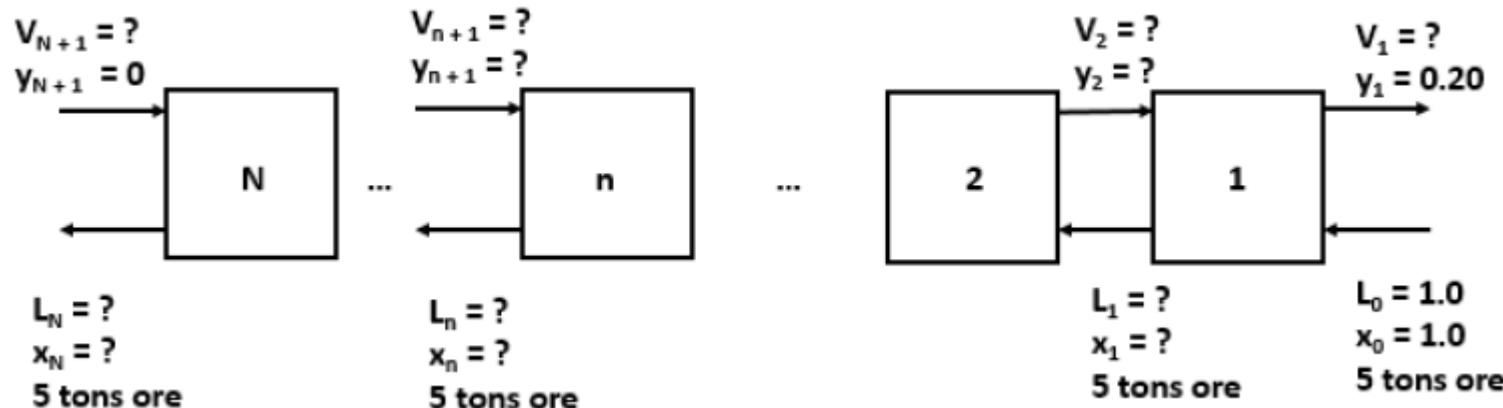
Leaching Example

A source of ore containing NaCl has been located. The mined material contains $\frac{0.2 \text{ tons NaCl}}{\text{ton of insoluble ore}}$. The strong extract exiting stage 1 is to have a concentration $y_1 = 0.20$. We need to recover 85% of the incoming salt using pure water as the solvent

If 5 tons of insoluble are to be processed per hour what is:

- The required flow rate of water
- The required number of ideal stages

Solution Retention Data:


Solution Concentration in Mass % NaCl	Tons of solution retained per ton of exhausted rock
0	0.30
4	0.50
8	0.80
12	1.00
16	1.10
20	1.15

One hour basis:

$$5 \text{ tons ore} * \frac{0.2 \text{ tons salt}}{\text{ton of insoluble ore}} = 1.0 \text{ tons NaCl}$$

The battery of leaching vessels has the following information:

Example Leaching Problem

Problem states that we will recover 85% of the NaCl in the extract:

$$y_1 V_1 = 0.85 * (x_0 L_0) = 0.85 * 1.0 = 0.85 \text{ tons NaCl in } V_1$$

$$1.0 - 0.85 = 0.15 \text{ tons NaCl in } L_N$$

Problem also states that $y_1 = 0.20$ $\therefore V_1 = 0.85 / 0.20 = 4.250 \text{ ton solution}$

Because the flows are very non-constant we need to begin by solving for x_N iteratively.

Because the flows are very non-constant we need to begin by solving for x_N iteratively.

Example Leaching Problem

From the retention data on the attached chart and table we can calculate L_N based on a guess of x_N . Then, because we know how much salt in the exiting raffinate, we can calculate what the concentration x_N that would correspond to the value of calculated value of L_N . If the value of x_N calculated as a function of L_N does not match the value used when we determined L_N then the guess of x_N was incorrect and we need to iterate.

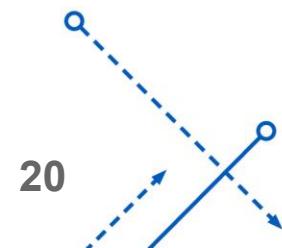
Guess $x_N = 0.06$

Interpolating the retention data leads to $0.65 \frac{\text{tons solution}}{\text{ton raw ore}}$

$$\therefore L_N = 0.65 \frac{\text{tons solution}}{\text{ton raw ore}} * 5 \text{ ton ore} = 3.25 \text{ ton solution}$$

Solution Concentration in Mass % NaCl	Tons of solution retained per ton of exhausted rock
0	0.30
$x_h = 0.04$	0.50
$x_h = 0.08$	0.80
12	1.00
16	1.10
20	1.15

$\therefore 0.15 \text{ tons NaCl in } L_N$ From mass balance


$$\text{Then } x_N = \frac{0.15 \text{ ton salt}}{3.25 \text{ ton solution}} = 0.046 \quad \text{This does not match the value of } x_N \text{ we used to determine } L_N$$

Guess $x_N = 0.051$

Interpolating the retention data leads to $0.5825 \frac{\text{tons solution}}{\text{ton raw ore}}$

$$\therefore L_N = 0.5825 \frac{\text{tons solution}}{\text{ton raw ore}} * 5 \text{ ton ore} = 2.913 \text{ ton solution}$$

$$\text{Then } x_N = \frac{0.15 \text{ ton salt}}{2.913 \text{ ton solution}} = 0.0515 \quad \text{This does match within our ability to read the graph.}$$

Example Leaching Problem

Solution Balance across the entire battery:

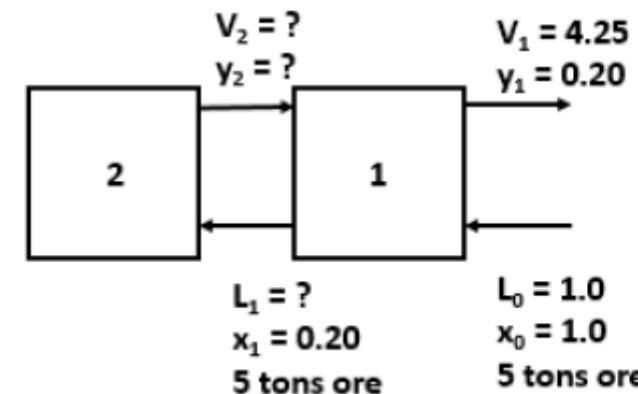
$$L_0 + V_{N+1} = L_N + V_1$$

$$1.0 + V_{N+1} = 2.913 + 4.25$$

a) $V_{N+1} = 6.16 \text{ tons of water}$

In order to determine the number of stages we need to construct an operating line. We already have two points:

$$(x_N, y_{N+1}) = (0.051, 0) \text{ and } (x_0, y_1) = (1.0, 0.20)$$



Example Leaching Problem

The next step is to do balances around stage 1

We know that for ideal stages $x_n = y_n$, therefore $x_1 = y_1 = 0.20$

From data we know that for $x_1 = 0.20$ there are $1.15 \frac{\text{tons solution}}{\text{ton raw ore}}$ and therefore $L_1 = 1.15 * 5 = 5.75 \text{ ton solution}$

Solution Retention Data:

Solution Concentration in Mass % NaCl	Tons of solution retained per ton of exhausted rock
0	0.30
4	0.50
8	0.80
12	1.00
16	1.10
20	1.15

Example Leaching Problem

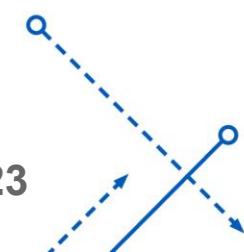
Solution Balance

$$L_0 + V_2 = L_1 + V_1$$

$$1.0 + V_2 = 5.75 + 4.25$$

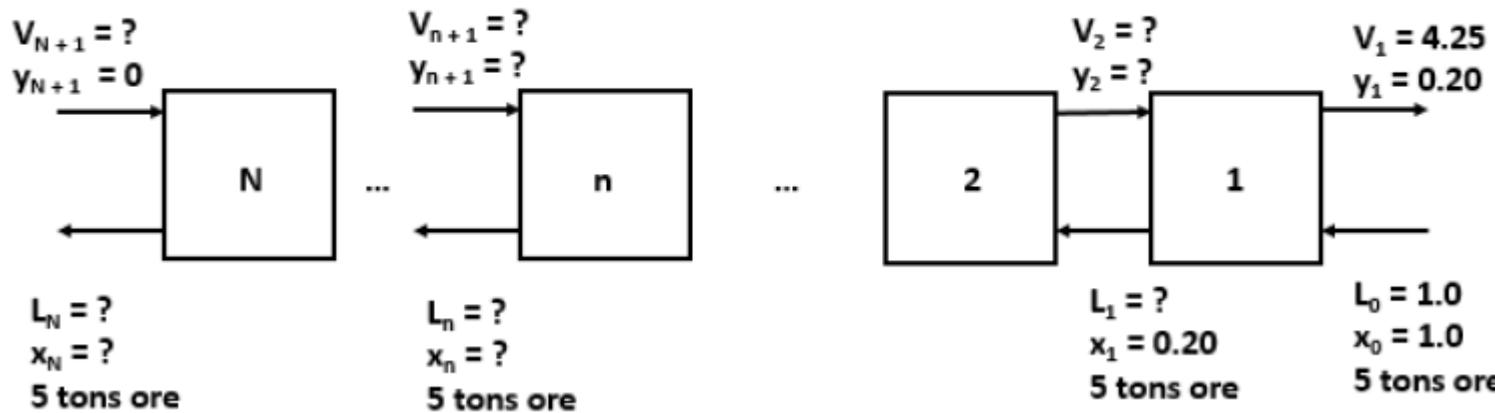
$$V_2 = 9.0 \text{ tons}$$

NaCl Balance


y2, not y1

$$x_0 L_0 + y_1 V_2 = x_1 L_1 + y_1 V_1$$

$$1.0 + y_2 * 9.0 = 0.20 * 5.75 + 0.20 * 4.25$$


$$y_2 = 0.111$$

Now we have the point $(x_1, y_2) = (0.20, 0.111)$

Example Leaching Problem

Now we will do balances containing stages 1 to n.

We can choose an arbitrary value for x_n due to the fact that the stage n is an arbitrary location in the battery.

Choose $x_n = 0.12$ this leads to $1.0 \frac{\text{tons solution}}{\text{ton raw ore}}$ from the retention data.

Therefore $L_n = 1.0 * 5 = 5 \text{ tons solution}$

Example Leaching Problem

Solution Balance

$$L_0 + V_{n+1} = L_n + V_1$$

$$1 + V_{n+1} = 5 + 4.25$$

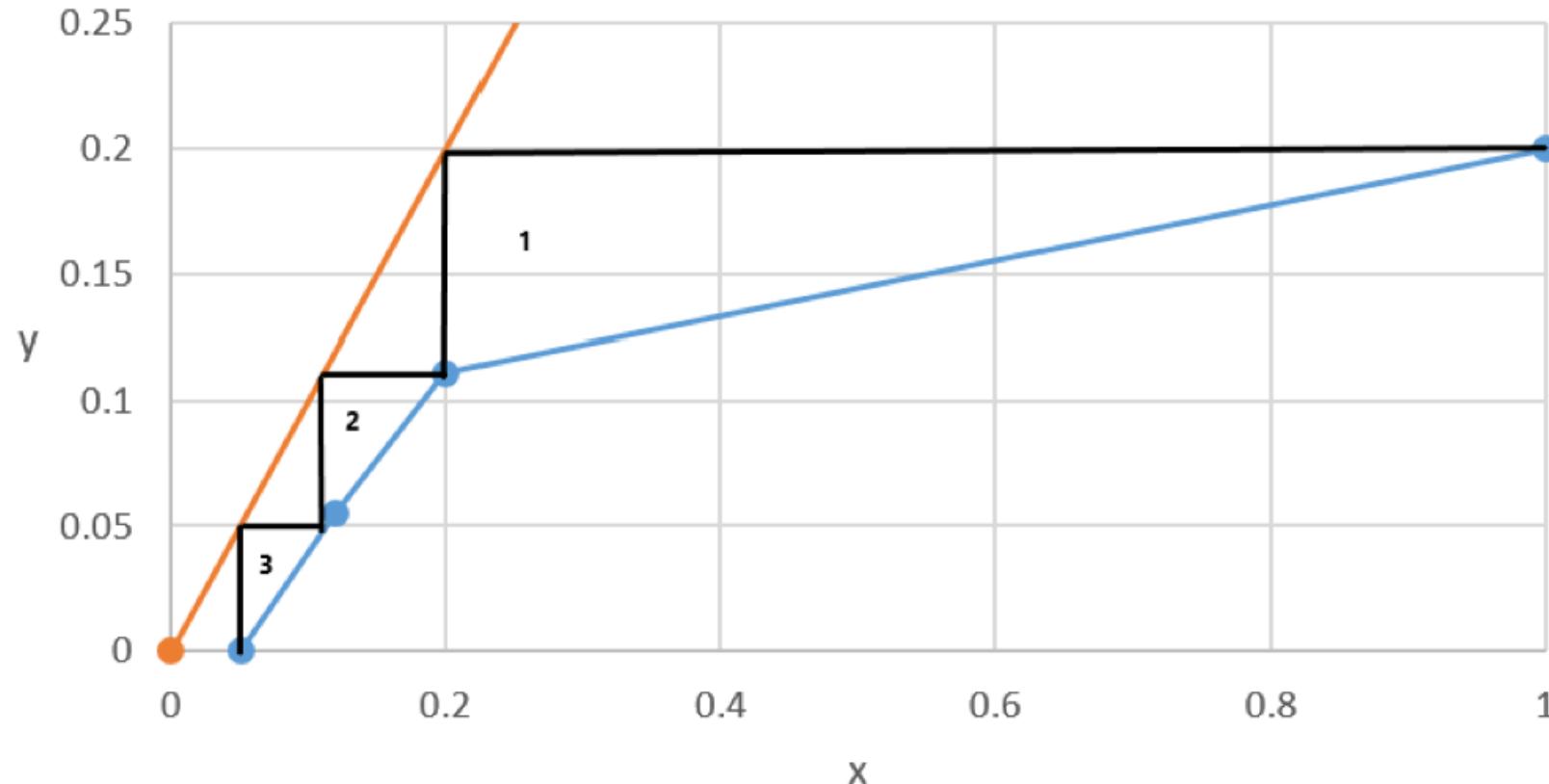
$$V_{n+1} = 8.25 \text{ ton solution}$$

NaCl Balance

$$x_0 L_0 + y_{n+1} V_{n+1} = x_n L_n + y_1 V_1$$

$$1.0 + y_{n+1} * 8.25 = 0.12 * 5.0 + 0.20 * 4.25$$

$$y_{n+1} = 0.055$$


Now we have the point $(x_n, y_{n+1}) = (0.12, 0.055)$

25

Example Leaching Problem

We can now plot the operating and equilibrium lines. (Remember that equilibrium line is $x_n = y_n$)

b) There are 3 ideal stages required.