

MAE 576 Final Project- Interfacing Two Basic Stamps
A Compact Disk Sorter with a Central Database

Humbly Submitted by:
Matt Szymanski
Nicholas Gill

On:
May Fifteenth, In the year of our Lord two thousand and three.

Table of Contents
Abstract 1

Introduction 2

Hardware used 3

Tasks and Procedures 5

Circuit Diagram 10

Software Development 12

Discussion 15

Conclusion 18

Appendix - Project Code 19

Abstract

 Micro-controllers can be used to control specific tasks. When many tasks are involved, the total

system needs the ability to communicate between micro-controllers. This assignment is to interface a

mobile robot (BOEbot) with a base station. There are several methods of communication: wired, infrared

(IR), and radio frequency (RF). This project utilizes the BOEbot as a CD sorter that runs along a track.

The base station sends the specific CD for the BOEbot to retrieve and reports the current location of the

BOEbot on a LCD. The CD sorter links the micro-controllers via wired serial communication and IR serial

communication. The hardware used and a price for the individual parts is listed. The individual tasks to

build this system show how the CD sorter can be replicated. The software and circuit diagrams explain the

program flow. The discussion provides and analysis of the design and future recommendations.

Introduction

 Robots can simplify tasks that require sporadic human intervention. One of the options for a CD

burn is to compile several songs from different CDs. This can be a tedious process, because the data has to

be extracted from each CD individually and the user has to be present to switch the CD. Another option is

to burn several copies of the same CD. This project is a representation of devise that would remove the CD

from the computer tray and exchange the CD with the next CD needed. During the exchanging process, the

BOEbot reports the status back to the base station. Using relatively simple tactile switch techniques, the

robot can accurately sense, and more importantly, interact with the environment. This same setup can be

used in a biology laboratory and take digital pictures, add drugs to samples, and report statistical

information such as temperature at the command of the main base.

 The project can be divided into five smaller projects: construction of the physical structure,

communication of the BOEbot and the Base Station, interfacing the LCD screen, construction of the CD

grabber, and movement of the BOEbot on the track. Each task has hardware involved and except for the

construction of the structure, all the tasks had software involved. During the design phase, the tolerances of

the individual subsystems mu st be considered. Once all the tasks are completed, the project can be

assembled and integrated into one main unit.

Hardware Used

 Below is a table of the hardware used, quantity and approximate cost.

Component Price Quantity total

1a StampWorks Full kit, Basic Stamp II 349.99 1 349.99
10 k resisters 3
Wire 3'

1b Hitachi LCD screen 1
1c Servo Motor, unmodified 1

2 Firestick II IR kit 40 1 40

3 Cable for Serial Communication 5 1 5
4 BOEbot Kit 229.99 1 229.99
5 8" x 8" sheet of Styrene (for CD trays) 1 8 8
6 24" x 10" x 1" Blue Ren 40 2 80
7 1/2" sheet of particle board 10 1 10
8 Rainbow switch- PS 12-f03 .50 2 1
9 Misc. Fasteners 5 1 5

Grand Total = 728.98

1. StampWorks full kit, Basic Stamp II

The full kit contains more parts than needed for the final project,

but this ensures any application change can be done readily. For

example, resister values can be changed easily. There is plenty of

wire, the proper tools, a multi-meter, AC adapter, stepper motor,

servo-motor, 7 segment display, LCD, etc.1

A cheaper version for this project would include only the

items listed in the first item of this category. A breadboard, such as

the Board of Education would also be needed.

A. The basic stamp II is programmed in PBasic. It can handle up to 600 line of instruction.

There are 16 I/0 ports. The execution speed is 4000 lines/sec. It has 26 bytes of RAM and 2k

bytes of EEPROM.

B. The Hitachi LCD screen, pictured above connected to the StampWorks, 2 two lines by 16

characters. It interfaces with the basic stamp though the HD44780 controller. The controller

has CGRAM space as external memory.

C. The Parallax Standard Servo (900-00005) is not modified and therefore it has two distinct

stroke limits.

2. Firestick II IR kit- The irststick is an IR emitter. It accepts serial

data though the SERIN command. It will accept a 9-volt battery

and regulate the voltage if a regulated voltage is not available.

3. The cable for the communication between the two basic stamps is

three 22 gage wires with an outer PVC cover.

4. BOEbot kit - The BOEbot kit is another product produced by

Parallax. Again, this part of the cost could be cheaper, but it is

much easier in the development of the project to purchase the

entire kit. The parts used were the wheels, chassis, Board of

Education, battery box, ball wheel, two modified servos, the

basic stamp, and misc. hardware.2 The modified servos will

spin a full 360 degrees.

5. The styrene sheets were for the CD trays. They were chosen

because they can be easily vacuum-formed.

6. The blue Ren is used because it can easily be machined. It does

not split and it resists warpage much better than traditional

wood. For long term use, it should be sealed to avoid flaking.

7. The particleboard was used to mount the equipment and keep it in place. This facilitates shipment, and

ensures a reliable work environment. Ren was not used for the base, because it was heavy and

expensive.

8. Rainbow Switch- PS12-f03- This tactile push switch has .100” throw and activation after .050.” It is

rounded on both sides of the trigger, and will cam smoothly.

1 For a complete listing, see: http://www.parallax.com/detail.asp?product_id=27297
2 For a total listing see: http://www.parallax.com/detail.asp?product_id=28132

Tasks and Procedures

 The project can be divided into five tasks: construction of the physical structure, movement of the

BOEbot on the track, construction of the CD grabber, communication of the BOEbot and the Base Station,

and interfacing the LCD screen.

1. Construction of the Physical structure:

A. The CD trays were formed by vacuum forming sheet styrene over a buck.

Above is a 3D model of the buck. Note that the buck is always a wall thickness smaller

than the finished part. The vacuum-forming process heats a styrene sheet until it is soft and

pliable. The sheet is lowered on top of the buck and is sucked onto the buck from a vacuum

below. There is some variation in size due to the vacuum-forming process. There is around .100”

variation in the CD tray diameter, and the BOEbot must be able to handle this variation.

B. The track grooves were done in Blue Ren on a mill. Two sections were used because the length

limitation of the mill. A ball bit was used for the circular groove for the rear wheel.

C. A ribbed box was made for the StampWorks board. This ensures the IR will be consistent.

D. All parts were fastened to ½” particleboard.

2. Movement of the BOEbot on the track.

A. The BOEbot was assembled according to the directions provided with the kit. It was decided to

avoid modifications to the BOEbot because it was on loan.

B. The BOEbot travels along the track in the rails. As the BOEbot travels along the rails, cams

activate the switch. A button counting

sub- routine counts the number of times

the button is pressed. The position of the

BOEbot is known by counting the

activation of the button. There is a home

position that a second switch (not shown)

uses to detect the location of the CD

drawer. The BOEbot always returns to

home to avoid stack-up of errors.

3. The CD grabber utilizes a servo motor and piston cylinder. There are three

positions for the CD. The Servo is at its maximum stroke, a rubber tip on the

bottom of the piton is pushed into the hole in the center of the CD. This

position is held for two seconds. The chamfered tip of the rubber slowly slides

into the CD hole. The CD is lifted to clear the height of the CD trays. The final

position ejects the CD by stripping the CD off the rubber as the tip and is pulled

into the ejection cylinder. The length of the cylinder is longer compared to the

piston’s diameter. This will ensure there will be a minimal amount of binding

between the piston and the cylinder. The stroke of the piston can be lengthened

by modifying the rotation of the servomotor, and by changing the radius on the effort arm on the

servomotor. Changing the radius was a gross adjustment, while the stroke of the servo was a fine

adjustment accomplished in software.

4. Communication of the BOEbot and the base station. There are two forms of communication used in

this project: IR and wired.

A. Infra Red communication was accomplished using the Firestick II kit. Serial Information from the

base station was input into the Firestick and it transferred the data to the collector on the BOEbot.

To be sure a line of sight was always present, communication was only done while the BOEbot

was at the home position. To debug the transmission, a program was loaded into a Palm Pilot that

detects IR. This helped point the problem of unsuccessful transmissions to either the emitter or

collector. To ensure the serial information received was received properly, a wait command was

used in SERIN. It waited for the letter “A” before accepting transmission.

B. Communication from the BOEbot to the Base Station used wired serial communication. In an

ideal situation, only one wired would be needed. To ensure the communication is robust three

wires are used. One wire transmits the data. The grounds on the two units are connected because

the voltage supplies are different, and therefore the grounds can be different. If the grounds vary

dramatically, they can cross the 1.5 V threshold and the data will be incorrect. The final wire is

for a follower pin. This pin tells the main sender that it is ready for transmission. SERIN and

SEROUT commands facilitate the actual data transfer.

5. The LCD screen should be connected to the Basic Stamp according to the manufacture’s requirements.

There are four data pins needed and two transmission pins needed for this experiment. The LCD must be

initialized in software before data can be sent in the program.

Circuit Diagrams

Base Circuit

BOEbot Circuit

Software Development

The software for our compact disc loader is based on the idea of dividing tasks between the micro-

controller on the BOEbot and the micro-controller on the base. Effective communication and scheduling

are key to the software design.

The primary task of the Base is to tell the BOEbot what CD to get, and to run the LCD display to

output the system status to the environment. The primary function of the BOEbot is to physically get the

CD and know where to put it back and where to get the next one. The software operation of the BOEbot

and Base station is largely repetitive and is based on a core set of subroutines which are called in a

particular sequence by the main program on each micro -controller. The sequence for both micro-

controllers is broken into four main parts: initialization, the main sequence, the sequence for the first CD,

and the sequence for the last CD.

The initialization sequence for the BOEbot allows the robot to "know" where it is by finding it's

home position. Once at it's home position, the BOEbot signals the bas e to let it know it is ready to execute

instructions. The initialization sequence for the Base clears the display, clears the memory for the CD

number, and loads the text for the LCD into the EEPROM. It then waits for the message from the BOEbot

that it is at home.

The main sequence for each picking up and replacing CDs has the base tell the BOEbot which CD

to retrieve, the BOEbot replaces the CD currently in the drive, and then retrieves the CD and reports it's

status. Between each operation, the BOEbot returns home to ensure that it is still correctly calibrated and

to facilitate communication scheduling. To take care of scheduling and to make sure that either end does

not miss a message, the base and the BOEbot only communicate while the BOEbot is at home. The

BOEbot only sends it's status while at the home position and only can receive instructions from the base

while at the home position.

The sequence for picking up the first CD is unique because the BOEbot doesn't have to put a CD

back before picking up the CD requested by the base. In the same way, the sequence for the last CD is

unique because the BOEbot must put the last CD back and then report back to the home position and tell

the base there are no more CDs to move.

To determine the order in which the CD's are fetched by the BOEbot, the base calls a subroutine

which sets the CD number the BOEbot should pickup. For simplicity, the source code used for

demonstration purposes simply calls the CDs in number order.

CD_orderer: 'Determine the order to get the CDs

CDorder= CDorder + 1 'Get the CDs in numerical order

The code is designed so that the CD_orderer subroutine can be replaced with code used to

determine any other order for the CDs. As long as the subroutine sets the value for the variable "Cdorder",

the program will continue to run.

The additional subroutines in the software for the base take care of displaying the proper messages

on the LCD. The BOEbot communicates it's status by setting a number value to the variable "status." The

base then cross references the number value with the appropriate text that should be displayed on the LCD

and then calls subroutines to actually display the text on the screen.

For the communication from the Base to the BOEbot, the SEROUT command is used to interface

with the Firestick II Infrared Transmitter. The (wait "A") modifer is added to provide flow control and to

add "encryption" to ensure the data is received by the correct robot.

Base

Send_CD:

SEROUT 15, 17197, ["A", CDorder] 'Send the letter A and then the CD number

BOEbot

Listen:

SERIN 3,813,[wait("A"),CDnumber] ' Wait for ASCII letter A and then get data

The main function of most of the subroutines in the software for the BOEbot is to accurately

control the servomotors. For the modified servomotors that run both wheels, the zero motion point for each

servo was found. For forward motion (which is defined as moving away from the home position and

towards the base) the desired speed of the motor is subtracted from the 0 motion value for the right motor,

and added to the 0 motion value for the Left motor.

Move_Forward:

PULSOUT RightMotor, (757 - PulseSpeed) 'Move right motor forward

PULSOUT LeftMotor, (760 + PulseSpeed) 'Move left motor forward

Pause 25

BUTTON ButtonPin, 0, 255, 10, swData, 1, Increment 'count the bumps and pickup CD

GOTO Move_Forward 'repeat until we hit the correct bump

For reverse motion, the signs are flipped.

BackHome:

PULSOUT RightMotor, (757 + PulseSpeed) 'Move right motor forward

PULSOUT LeftMotor, (760 - PulseSpeed) 'Move left motor forward

Pause 10

BUTTON ButtonHomePin, 0, 255, 10, swData, 1, Drop_CD 'sense when we are home

GOTO BackHome

For the unmodified servo motor which controls the CD grabber, the subroutines are set up to

define a position for the motor to move to, and then provide an adequate number of pulses for the motor to

fully move to that new position.

Drop_CD:

FOR PulseCycle = 0 TO 50 'give servo time to move

PULSOUT GrabberPin, 300 'set drop position of servo

PAUSE 10

NEXT

Return

The only difference between picking up, carrying, and dropping a CD is in the position of the

servo motor.

For the communication from the BOEbot to the Base, a wire was used along with serial

communication with flow control using the Fpin modifier in the SEROUT command. This allows us to

know when the other processor is ready to send and because a wire is used, "encryption" or some kind of

identifying header is not needed.

BOEbot

Send_Data:

SEROUT 11\10,16468,[status] 'send the data

Base

Listen:

SERIN 11\10,16468, [wait("A"), status] ' Wait for letter A then send value

Discussion

With Mechatronics being the interaction of mechanical systems with electrical systems, the

implementation of this project brought to light the interdependency between the two systems. Many

situations came up which demonstrated how one system affects the other.

There were many aspects of this project that worked out well while constructing the different

elements of the system. Since a CD loader only needs to operate in a linear fashion, it made sense to put he

BOEbot into a track. By constraining the robot in such a way, the calibration of the servomotors for the

wheels became critical. By changing the values sent to the servomotors by the mircocontroller, we were

able to fairly accurately determine the zero motion point for each of the modified servos. We incremented

the output until the motor started to turn and then repeated the process for the opposite direction. By taking

half the difference in the input values, the zero point from which to add or subtract the speed control value

was determined. This method worked very well and produced good, repeatable straight tracking for the

BOEbot. The alternative would have been to utilize a live axle driven by one servomotor, but that option

was not needed.

Another aspect of the mechanical, electrical interaction the worked well was the use of the cams

on the track to activate the switches. The cams could be easily filed and adjusted to correctly position the

robot. Once a good speed was determined, the behavior of the robot as it moved over the cams was very

reliable.

The execution of the final program also turned out to be much simpler than previous versions that

we had developed. We originally had programmed the software so that the different subroutines could call

each other without being sequenced in the main program. We soon found that it was difficult to plan the

logic and inefficient from a programming standpoint to have the subroutines calling each other. By making

the subroutine mostly self sufficient, each subroutine could be called from the main program. Thus, the

program logic was laid out in the main program, with the subroutines called to perform their tasks and then

return to the main program. This provided good flow and an efficient design.

Along with the systems that worked well, there were also many areas that were troublesome, some

of which were removed from the system. One example is we originally tried to implement a more robust

error checking algorithm for the communication between the two processors. We had intended on having

processor A send a message, processor B, send back the same message, processor A compare the original

with the one received, and if they were the same, send the message again to be executed by processor B. It

turned out to be too difficult to get the timing correct and we ended up abandoning the idea.

We had also set out to have the BOEbot travel at a higher rate of speed. When stream ling our

code and removing unnecessary "debug" commands the speed of the robot increased from that which we

were originally testing. As the speed increased, the robots ability to stop at the correct location became

much worse. We ended up adding pauses and in some cases leaving in un-needed debug commands in

order to get the speed back to where the robot was accurate.

Given the present system, and observing it's function, there are many things that can be done to

improve our system and make it much more robust. One feature that would be nice to implement in the

future is some sort of subsystem to check if the CD was actually picked up when the grabber cycled down

to get the CD. A photo detector or a simple leaf switch on the outer circumference of the CD would work

well for this task. If the leaf switch was not activated after the grabber lifted, then the robot could return to

home and then try to obtain the correct position again.

It would also be a beneficial addition to add some sort of sensing to determine the open or closed

status of an actual computer CD drive. Our setup, created for demonstration purposes, accurately shows

how CDs could be placed in a certain position and removed in a specified order. To make the system

usable in the real world, it would be nice to have the BOEbot sense an open CD drawer, remove the CD,

and replace it with the next one. Furthermore, serial communication between the BOEbot and computer

could further enhance the system. By allowing the computer to specify the order in which to load the CDs,

and the BOEbot send a command back to the computer telling it to close the open CD drawer the system

would be 100% automated.

This system is also far from efficient. If the BOEbot did not have to travel back to the home

position between every operation, much time could be saved in the loading and unloading of the CDs. The

efficiency could also be improved by having the BOEbot reorder the CD's in the trays, moving the finished

CD's to the end of the track, and the CD's not operated on to the beginning of the track, all while the disk

drive was busy with it's current disc. This way, the next CD to be loaded would be nearest to the drawer.

Overall, the CD loader system as a whole works well and is a good demonstration of distributed

tasking between two micro -controllers. Our system provides a good starting point for the development of a

commercially viable product.

Conclusion

Many times a system will warrant the use the two micro-controllers. The CD sorter utilized two

controllers by using one controller to manipulate the CD’s and the other controller to display the current

condition on the LCD. The communication was done by serial communication though IR and wired

connection. Both forms has error checking. The IR used a wait command, and the wired used a flow

control wire.

Several items could be explored further. It would be convenient to have a manual mode to control

to BOEbot. An eject button that senses when the door of the CD-ROM is open would allow the project to

be used for burning multiple CD’s. The BOEbot returns home for secure data transmission. Perhaps the IR

communication could be eliminated and only wired would be used.

This design could be used in other applications where a main base sends commands to a mobile

robot that interacts with only precise discrete positions. One example of this would be a medical laboratory.

Appendix

' ==
'
'{$PORT COM2}
' File...... Final Project-BOEbot.BS2
' Purpose... Automatic CD Loader- BOEbot
' Author.... Nick Gill and Matt Szymanski
' Started... 19 APRIL 2003
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==
' --
' Automatic CD Loader- BOEbot
' --
' Constants
' --

ButtonHomePin CON 5 'Home button connected t pin 5
ButtonPin CON 7 'CD button set to pin 7
RightMotor CON 12 'Right servo connected to pin 12
LeftMotor CON 13 'Left servo connected to pin 13
GrabberPin CON 14 'Grabber servo connected to pin 14

' --
' Variables
' --

PulseCycle VAR word 'Hold value of pulse for servo

CDNumber VAR word 'Hold which CD to move

PulseSpeed VAR word 'set the servo speed

swData VAR byte 'Workspace for Button
ButtonCounter VAR word 'count the activations

status VAR word 'hold the satus of the BOEbot

' --
' Initialization
' --

LOW RightMotor 'Right motor pin to output-low
LOW LeftMotor 'Left motor pin to output-low

PulseSpeed = 100 'Speed to add to stopped value

FindHome:

PULSOUT RightMotor, (757 + PulseSpeed) 'Move right motor forward
PULSOUT LeftMotor, (760 - PulseSpeed) 'Move left motor forward
PAUSE 25
BUTTON ButtonHomePin, 0, 255, 10, swData, 1, Main ' Debounce and execute button
GOTO FindHome 'Repeat the process until button is pressed

' --
' Program Code
' --

Main:

status=0 'set the message to- at home

GOSUB Send_Data 'send value of status to base

GOSUB Listen 'find out which CD to get

status =1 'set message to- Getting CD
GOSUB Send_Data 'value of status to base

ButtonCounter=0 'reset the button for next run
GOSUB Move_Forward 'physically get the CD

Pickup: 'marker for everything but the first CD

GOSUB Get_CD 'Pick up the CD

GOSUB Backhome 'Return to home

status = 2 'set message to- Playng CD
GOSUB Send_Data 'send value of status to base

GOSUB Listen 'Get new CD number
status = 3 'set message to- Return CD

GOSUB Send_Data 'send value of status to base

GOSUB Get_CD 'pick up the CD

CDnumber = Cdnumber - 1 'we want the previous CD location
ButtonCounter=0 'reset the button for next run
GOSUB Return_CD 'just like move forward, but CD - 1

Dropoff: 'marker for after Return CD

GOSUB Drop_CD: 'drop returned CD on tray

GOSUB BackHome: 'Return Home

IF CDnumber > 5 THEN CD_End 'If we are done- jump to end
status = 1 'set message to- Getting CD
GOSUB Send_Data 'send status to base

CDnumber = CDnumber + 1 'restore the "real" CD we want
ButtonCounter=0 'reset the button for next run
GOSUB Move_Forward

CD_End: 'marker for the last CD

Pause 2000
status = 4 'set message to All Done
GOSUB Send_Data 'send message

END

' --
' Subroutines
' --

BackHome:

PULSOUT RightMotor, (757 + PulseSpeed) 'Move right motor forward
PULSOUT LeftMotor, (760 - PulseSpeed) 'Move left motor forward
Pause 10
BUTTON ButtonHomePin, 0, 255, 10, swData, 1, Drop_CD 'sense when we are home
GOTO BackHome 'repeat until button is pressed

Move_Forward:

PULSOUT RightMotor, (757 - PulseSpeed) 'Move right motor forward
PULSOUT LeftMotor, (760 + PulseSpeed) 'Move left motor forward
Pause 25
BUTTON ButtonPin, 0, 255, 10, swData, 1, Increment 'count the bumps and pickup CD
GOTO Move_Forward 'repeat until we hit the correct bump

RETURN

Return_CD:

PULSOUT RightMotor, (757 - PulseSpeed) 'Move right motor forward
PULSOUT LeftMotor, (760 + PulseSpeed) 'Move left motor forward
Pause 25
BUTTON ButtonPin, 0, 255, 10, swData, 1, Increment_Two 'count the bumps and drop CD
GOTO Return_CD

RETURN

Get_CD:

FOR PulseCycle = 0 TO 50 'give servo time to move
PULSOUT GrabberPin, 1050 'set down position of servo
PAUSE 10
NEXT

Pause 2000

FOR PulseCycle = 0 TO 50 'give servo time to move
PULSOUT GrabberPin, 600 'set up position of servo
PAUSE 10
NEXT

RETURN

Drop_CD:

FOR PulseCycle = 0 TO 50 'give servo time to move
PULSOUT GrabberPin, 300 'set drop position of servo
PAUSE 10
NEXT

Return

Increment:
ButtonCounter = ButtonCounter + 1 'count the buttons
IF (ButtonCounter = CDNumber) THEN Pickup 'stop at the correct CD and get CD
GOTO Move_Forward 'move to the next button

Increment_Two:
ButtonCounter = ButtonCounter + 1 'count the buttons
IF (ButtonCounter = CDNumber) THEN Dropoff 'stop at the correct CD and drop CD
GOTO Return_CD 'move to the next button

Listen:
SERIN 3,813,[wait("A"),CDnumber] ' Wait for ASCII letter A and then get data

RETURN

Send_Data:
SEROUT 11\10,16468,["A",status] 'send letter A and then the data

RETURN

' ==
'
'{$PORT COM1}
' File...... Final Project-Base.BS2
' Purpose... Automatic CD Loader- Base
' Author.... Nick Gill and Matt Szymanski
' Started... 19 APRIL 2003
' Updated... 01 MAY 2002
'
' {$STAMP BS2}
'
' ==
' --
' Program Description
' --
' Automatic CD Loader- Base

' --
' I/O Definitions
' --

E CON 0 ' LCD Enable pin (1 = enabled)
RS CON 3 ' Register Select (1 = char)

LCDbus VAR OutB ' 4-bit LCD data out

' --
' Constants
' --
ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Custom character RAM control

' --
' Variables
' --
time VAR byte 'variables for the LCD
CDorder VAR byte
char VAR Byte ' character sent to LCD
addr VAR Byte ' message address
sendingcounter VAR Word
programloop VAR byte
status VAR Word

' --
' EEPROM Data
' --
Msg0 DATA " AT HOME ", 0 'set the messages to be displayed
Msg1 DATA " GETTING CD ", 0
Msg2 DATA " PLAYING CD ", 0
Msg3 DATA "REPLACING OLD CD", 0
Msg4 DATA " ALL DONE ", 0

' --
' Initialization
' --

Initialize:
 DirL = %11111101 ' setup pins for LCD

LCD_Init: 'Initialize the LCD
 PAUSE 500 'let the LCD settle
 LCDbus = %0011 '8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1

 PULSOUT E, 1
 LCDbus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

CDorder = 0 'reset the CD number to 0

 char = ClrLCD ' clear the LCD
 GOSUB LCD_Command

' --
' Program Code
' --

Main:

GOSUB CD_orderer 'determine which CD to get

GOSUB Listen 'Get the status of the BOEbot

GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to LCD

PAUSE 5000 'wait for the fun of it
GOSUB Send_CD 'send which CD number to get

GOSUB Listen 'get the status of the BOEbot

GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to LCD

Loop: 'Marker for everything but the first CD

GOSUB Listen 'get the status of the BOEbot

GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to LCD

GOSUB CD_orderer 'determine which CD to get

PAUSE 5000 'pause while the old CD plays
GOSUB Send_CD 'send the BOEbot new CD number

GOSUB Listen 'get the status of the BOEbot

GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to LCD

GOSUB Listen 'get the status of the BOEbot

IF status > 3 THEN All_done
GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to LCD

GOTO Loop: 'Do this for every CD except for the last

All_Done: 'The last CD is special

GOSUB Get_Message 'Check which message to display

GOSUB Show_Message 'Send the message to the LCD

END

' --
' Subroutines
' --

CD_orderer: 'Determine the order to get the CDs
CDorder= CDorder + 1 'Get the CDs in numerical order

Return

Send_CD:
SEROUT 15, 17197, ["A", CDorder] 'Send the letter A and then the CD number

RETURN

LCD_Command:
 LOW RS 'enter command mode for LCD

LCD_Write: 'write the message to the LCD
 LCDbus = char.HighNib 'output high nibble
 PULSOUT E, 1 'strobe the Enable line
 LCDbus = char.LowNib 'output low nibble
 PULSOUT E, 1
 HIGH RS 'return to character mode
 RETURN

Get_Message:
 char = ClrLCD 'clear the LCD
 GOSUB LCD_Command
 LOOKUP status, [Msg0, Msg1, Msg2, Msg3, Msg4], addr 'determine which message to display

Show_Message:
 READ addr,char ' read a character from EEPROM
 IF (char = 0) THEN Msg_Done ' if 0, message is complete
 GOSUB LCD_Write ' write the character
 addr = addr + 1 ' point to next character
 GOTO Show_Message

Msg_Done:
 RETURN

Listen:
SERIN 11\10,16468, [wait("A"), status] ' Wait for letter A then send value

RETURN

