MAE 576 M echatronics

Final Project: Distributed Sensing and Control for Mobile
Robot: Automated Guided Vehicle

Group D:

John Eddy
Gaurav Tyagi
Gaurav Kimothi

Amol Kulkarni

8" May 2003

Table of Contents:

Abstract 2
Introduction 2
Application Setup 3
Laboratory Procedures 6
Results 16
Discussion 17
Conclusions 18
Contributions 18
Appendix | — Matlab Source Code 19
Appendix |1 — PBasic Source Code For Robot 30
Appendix |l — PBasic Source Code For Base Station 32

Abstr act

This report discusses the implementation of a distributed sensing and control framework for a mobile robot.
The project explores the advantages of reducing computatioral load on individual processors. The control
framework consists of three processors which are coupled together with wired and wireless communication
channels. We interfaced infrared (IR), radio frequency (RF), and serial communication channels between the
processors. This report discusses the challenges faced while interfacing three processors. The report includes
the PBasic and MATLAB source codes used for interfacing as part of the Appendix.

I ntroduction

The main objective of the project was to use a distributed control framework where two or more processors
share the computational load. This sharing of load necessitates the need of some form of communication
protocol between the processors. We developed the required framework keeping in mind a specific application.
The application we chose was an Automated Guided Vehicle (AGV). The main aim of the project was to
control the movement of an AGV from a Base station. There exists two way communications between the base
station and AGV. The base station directs the path of the AGV and the AGV sends back the information to the
base station regarding its current status. The communication that exists between these two processors is
wireless. In order to overcome the computational shortcomings of the Basic Stamp we interfaced a serid
communication protocol between the processor on a personal computer and the Basic Stamp. Some of the
important features of the project were

Setting up the IR communication between the two Basic Stamp processors using the Firestick 11;

Setting up the RF communi cation between the two Basic Stamp processors using TWS-434 433MHz RF

transmitter and RWS-434 433MHz RF recelver;

Setting up Serial communication between the Basic Stamp Processor and the processor on the Personal

Computer;

Building the Robot using the Boe-Bot Kit; and

Calibrating the servomotors for accurate displacemert and turning.

The following section discuses the hardware and software used in this project.

Hardware
Basic Stamp II: A BASIC Stamp is a single-board computer that runs the Parallax PBASIC language
interpreter in its microcontroller. The developer's code is stored in an EEPROM, which can also be
used for data storage.
Basic Stamp |l processor on Board of Education(BOE).
Various resistors
RS -232 communication cable
Firestick Il IR Transmitter and Receiver
2 RF Transmitters, Receivers and Antennas
Personal computer
9V Battery for IR communication transmitter
Adapter to supply power to Basic Stamp Il (12 VDC, 1000mA)

4, AAA batteries to supply power to the stamp processor and servo motors on the Boe-Bot

Software
Basic Stamp Editor
Circuit Maker
MATLAB

Application Setup

We used the Boe-Bot (robot built out of the Parallax robot kit) as our automated guided vehicle and the Basic
Stamp |1 board as the base station for our application. The Boe-Bot has a Basic Stamp processor installed on it.
We had 8 stations defined on a shop-floor. The stations were laid in the form of an octagon as shown in Figure
1. The center of the octagon is the origin of the world coordinate system. All the station coordinates are
defined with respect to this origin. The objective was to be able to direct our mobile robot to any of these
stations using the base station. For this purpose we needed to set up the 2-way communication between the two
processors. Initially we had IR and RF wireless type communication setup between the AGV and the Base

Station. However, we were experiencing interrupted communication through IR channel because we were not

aways able to maintain line-of-sght between the emitter and the detector. Hence, we instaled RF

communication channels both ways.

5

Figure 1: Octagonal Layout of AGV Stations.

Modes of Operation
There are three ways in which we can control the movement of our AGV using the Base Station.

Real-Time Control: Here the Base station directs the AGV to move to a specific station. After the
move completion, AGV sends back the confirmation of the move and awaits further instructions.

Pre-Defined Path: Here the user can define a set path for the AGV to traverse. The AGV traverses
the path without accepting any instruction in between and reports the confirmation of each move

completed.

User Defined Coordinates: Here the user specifies the coordinates of a point relative to the WCS
origin and the AGV traverses to that point and sends back conformation of move completion ard
awalits further instructions.

The concept used to drive the robot is very simple. We used vector algebra to compute the current direction of
the robot and the angle and distance it would need to travel in order to reach a desired station from its current
position. Due to the shortcomings of the Basic Stamp processor we could not do most of the computation
required to drive our robot. For example, we could not calculate the angle between the current vector and the
next desired vector. This is because the Basic Stamp does not handle floating point and signed numbers well.
In order to overcome this we interfaced the processor on a persona computer with the Base Station processor.
We used MATLAB to do most of our computation and used the serial communication cable RS-232 to set up
the serial communication between the Base station and MATLAB. The communication flow between
MATLAB, the Base Station, and the Robot is shown in Figure 2(a).

Requests &

Verification

Requests

Qg?\} Instructions Verification

Figure 2(a): Communication Diagram for Agentsin Sensing Network

The concept used to move the robot from one station to the other is described below in steps with help of Figure
3.

Angle
((X1, Y1)

New Direction Current Direction
Origin
(%2, ¥2)
Figure 2 (b)

Figure 2(b) shows the vector representation of the current and new or desired direction of the robot.
Knowing the co-ordinates of the present and desired location we cal cul ate the angle between the vectors
using the dot product.

The angle thus obtained is the acute angle between the two vectors and hence we need to decide which
way to turn, for the case shown in figure the answer is left.

In order to compute the correct direction we first calculate the unit vector along the current direction and
then rotate it clockwise (right) and check if the unit vector obtained is same as that along the new
direction. If it is, then the direction to turn is right otherwise l€ft.

We compute the distance robot needs to travel using the distance equation knowing the coordinates of
the current and desired position.

Once we have the angle, direction and the distance robot needs to travel we compute the angle cycles,

distance cycles we need to send out to robot using our calibration equation explained further.

L aboratory Procedures

In this section, we discuss the various tasks that were completed on behalf of this project.

Building the Boe-Bot
The assembly of the Boe-Bot was done by following the instructions provided in the “Robotics! Sudent

Workbook” . The assembly started off with the setting up of the top-side hardware on the Boe-Bot chassis.
Then the two parallax pre-modified servos were mounted on to the Boe-Bot chassis after their horns had been

removed. A 4-battery pack was aso attached to the chassis. The Boe-Bot whedl parts were assembled and the

wheels attached. The two front wheels were attached to the servo output shafts. The supplied plastic ball was
used as the tail wheel with the cotter pin as its axle. Finally the Parallax Board of Education was mounted on
top of the chassis using ¥ inch screws. The servos were plugged into the servo ports on the board of education

and the Boe-Bot had been completely assembl ed.

Setting-Up the Infra-Red (IR) Communication
Asynchronous Serial IR Communication between the Base-Station and remote-robot was implemented using
the Firestick 11. The transmitter was set up on the Boe-Bot while the Base-Station had the receiver set up. The

figure below shows the circuit set up for IR communication.

7
N
= il
| SmE
)

Berial Data From Stamp or FIO |

TOC (Tt put Only) |

(a) Transmitter (by Receiver

Figure 3: IR Communications Components and Setup.

TheFirestick Il requires a9V battery source. It transmits serial data by connecting to asingle 1/O data pin on a
microcontroller. The recelver circuit needs just an infrared detector module, the Panasonic PNA4602M, which
is capable of serial data reception at baud rates up to 2400. The circuit connectiors are pretty smple; they are
just connected to I/O pins and voltage sources. We chose this communication interface because both the

hardware and software interface is easy.

SERIN and SEROUT commands are used to transfer data serially. The syntax for sending and receiving data is
as follows:

Sending data:

SEROUT pin number, baudmode, ["password","sent data"] €]

Receiving data:

SERIN pin number,baudmode, [WAIT (“password"),received data] 2

By using a synchronization or address technique, the receiving controller can be forced to ignore data not

preceded by a unique address or synch byte. This allows selective control of multiple receivers from a single
transmitting station.

Setting-Up the Radio-Frequency (RF) Communication

An effective RF communications network was set up using the BASIC Stamp with the TWS/RWS RF modules.
Two 433MHz whip style antennas are also used in the set up for long range detection. The receiver in this case
was set up on the Boe-Bot and the transmitter was set up on the base station. The figure below shows the circuit
St up.

hd
[|
I | B 434
TTWE-434 T . i 6 7 =&
5y 12 31 4 56 5F J
v O T
—m
WD — 7 ax
POLLDOWNH BT TCR
B I LO-PIN
S

(a) Transmitter (b) Receiver

Figure 4: RF Communications Components and Setup.

The TW-434 outputs up to 8mW at 433.92 MHz. It has an operating range of about 400 ft. outdoors, or about
200 ft. indoors. It can go through most walls. The operational voltage varies from 1.5 to 12 V and it accepts

both linear and digital input. Figure 5 below shows the schematic of the transmitter with its pin specifications

.
q pin 1 e
al o @ pin 2 Voo
H B o R R pin 3 @nd
= :I) 4 2 Fin4d ; znd

pin & : RF Gutput
pini & @ Code niput

Figure5: RF Transmitter Schematic

The RWS-434 receiver aso operates at 433.92 MHz with an operational voltage of around 4.5 -5.5V DC. Its
sengitivity is 3 uV, and it can have both linear and digital outputs. Figure 6 below shows the schematic of this

receiver with the pin specifications

43 . 5m pelin 12 Gind
pelin 2 5 Celglital Cutput
IF 3 Line ar Cutput

. -T Tiwltg-P . pin 41 Vee
ol E o ﬂ_"' PN 5 2 Voc
¥ 123 pin 6 © Gnd

_ 3E. Lmn plin 7 2 GEnd

pln & cAnt | Abouwt 30 - 35 cm)

Figure 6: RF Receiver Schematic

The RF transmitter and receiver need to be connected to antennas when they are used for long-range detection.
We used two 433MHz whip style antennas. This antenna is fed with an RG-174 coaxial cable. Figure 7 below
shows its schematic and dimension details

0.20" Dia.

B.04" - 418 MHz
5. 75" - 433 MHZ
292" -6 MHz

— ¥

Thraads common
to ground

Ri5-174 Coax 4 5"

Figure 7: RF Antennae Schematic
Normally in the case of more than one set of RF communication set-ups, disturbance and interference from

other RF communications may occur. To avoid this, an encoder and decoder can be used. We have as part of
our kit the Holtek 8-bit encoder HT-640 & decoder HT-648L. The figure below shows their schematics

10

4b| Transmitter Circult }Jf""
C

VDD 10-Address
8-Data
L2 s Yapn wop oiichh ¥ a|gvoo
P12 o Zapz a0 D2z z[@AD10
] R 01303 2z A2
= 4 o14C]4 21 [Pae
LI 2oap14 o1sdls - B
L2 o 8ams Diss 1 A6
g
n_":;—“—? AD1E D:;E ; 16 gji
12 o tflapir 17
T s piNDs & Az
- PoT oscz i 15 A2
e ossidnn wpal
T:m S vis1z 13 A0
ROEC 44
osm HT648L
Plvss - 24 SOP/SDIP
T
HTE40
(a) Encoder HT-640 (b)y Decoder HT-648L

Figure 8: Encoder and Decoder Schematics

It is called the 318 Series because it sends 10 bits of address and 8 bits of data three times. This encoder and
decoder pair can be assigned ten-bit addresses, so that only this pair of devices can communicate with each
other. The encoder can send seria data three times after the address was sent. The serial data can also contain a
qualifier (password) to increase security. Correspondingly, the decoder will have to receive the same address,
same serial data three times and the same qualifier in the specific baud mode. Therefore, even though other RF
devices are operating on the same frequency, no interference occurs. Also the encoder and decoder pair operate
under 2.4V — 12V at low power and high noise immunity. It has low standby current and is a small electronic
component. However, in this project we did not use this method project. We used the ‘wait’ function of the
SERIN and SEROUT command to make sure that the communication is not interfered. We aso made use of

PAUSE statements at the appropriate places in the code to account for uninterrupted data communication.

Calibrating Servos

It was very essentia to calibrate the servos in order to ensure accurate movement of the robot. The robotics
manual was used as areference while calibrating the servos. The servos were attached to pins 12 and 13 of the
Boe-Bot board. The Basic Stamp sends out pulses to the servo motor through pins 12 and 13 which enable the

servos to rotate. High time is the main ingredient for controlling a servo’s motion, and it is most commonly

11

referred to as the pulse width. According to the robotics manual, pulse widths for pre-modified servos range
between 1.0 and 2.0 ms for full speed clockwise and counterclockwise respectively. We use the standard
PBasic command PULSOUT to send out pulses to the servo. The PULSOUT value of 500 corresponds to 1.0
ms and PUL SOUT value of 1000 corresponds to 2.0 ms. The pulses are sent every 20 ms in order to ensure that
the servo rotates continuously. During the process of calibration it is important was to determine the threshold
value above which the servo changes its direction of rotation. After performing some experiments and using
trial and error we determined that at a PULSOUT value of 750, our servos stand still and anything below or
above this value makes them rotate though in opposite directiors. Later we calibrated our robot to calculate the
number of cycles required to make it traverse a certain distance and tur n through a certain angle. We observed
that among other things, the calibration was highly dependent on the power source. Hence it is imperative that
the robot is calibrated periodically and with a new set of batteries. We calibrated the robot numerous times as

the batteries kept dying; one such calibration chart is shown in Figure 9 bel ow.

Distance Calibration

450
y = 8.33024581x + 0.73416359 _

400
aco R? = 0.99987742 /
300 /

250 /

200 /

150 /

100 /

50 /

0 10 20 30 40 50 60

Distance Cycles

Distance (inches)

Figure 9: Example Servo Calibration Curvefor Distance Cycles.

The chart in Figure 10 shows the calibration of the robot for left and right turns. The equation on the left shows
the calibration equation for the left turn and the regression equation on the right shows the calibrationfor a right
turn. Though we usualy calibrated in this way, ultimately we decided to use a single equation for both turn

directions.

12

Angle Calibration

6Q = 18.625895% + 0.240112 y = 16.21127x + 1.03722

0 R? = 0.999483 Py R? = 0.99852

40 /7 Right Turn
/ ¢ Left Turn

—Linear (Right Turn)
Linear (Left Turn)

Angle Cycles
N w
o o

\

o

Angles in radians

Figure 10: Example Servo Calibration Curve for Angle Cycles.

Programming
A unique program was written for each of our three processors. A listing of the code can be found in the
appendices of this document. The code given to the Boe-Bot was designed to perform the requested movements

and report status such as “ message received”’ and “move completed”.

The program for the base station was intended to facilitate communication between MATLAB, the user, and the
Boe-Bot. So in that respect, it is little more than a relay station.

Finally, the MATLAB code is primarily used to compute the required moving instructions to achieve a users
request of the Boe-Bot. These instructions, once computed, are sent through the Base-Station and onto the Boe-

Bot.

Figures 11 through 13 below show an overview of the flow of control of each program. Specific functions are

not represented. The diagrams are intended only to give a basic idea of the operations of each unit.

13

Begin

\ 4

Initialization
Hereweinitialize al variables, pin settings, and execute
any startup functions.

A

Wait for Instructions
Here, the program blocks (indefinitely) on a SERIN

command awaiting move instructions from the base station.

Report Receipt of Instructions
Here, the robot sends a message to the base station

indicating that it has received a set of moving instructions.

\ 4

Execute Move
Here, the robot issuesthe received instructionsto the servos
causing it to movet he desired distance in the desired
direction.

Report Move Completion
Here, the robot sends amessage to the base station
indicating that it has completed executing the move
instructions

Figure 11: Robot Source Code Flow of Control.

14

Begin

A 4

Initialization

Hereweinitiaize all variables, pin settings, and execute
any startup functionswhich includes sending a message to

Matlab indicating our readyness.

A 4

Wait for Mode

Here, the program waitsfor Matlab to indicate which mode

of operation will be used

Execute Real Time Moving
Here we await auser input station and send it to
Matlab to compute the moving instructions. We

then send the moving instructionsto the robot.

Execute Pre-Defined Circuit
Here we receive moving instruction sets one
a atime and send them to the robot. We stop
whentheLast Station flag is received.

Defined
Circuit?

Execute Custom L ocation

NO Here we receive aset of moving instructions

Custom

Location? from Matlab and send them to the robot.

Figure 12: Base Station Sour ce Code Flow of Control.

15

Begin

A 4

Initialization
Here we establish communication with the base station and
retrieve the desired mode from the user. We send that mode

to the base station which should be waiting for it.

\ 4

Execute Real Time Moving
Here we await a station input from the base station.
We compute the required moving instructions and
send them back to the station.

Execute Pre-Defined Circuit
Here, we prompt the user for the desired
stationsto visit. We then send the moving
instruction sets one at-a-time to the base
Station.

Defined
Circuit?

v

Execute Custom L ocation
Here, we prompt the user for the x,y
coordinates of the custom location. We then
compute and send the moving instructions to
the base station.

Abort
Tell the user that an invalid mode has
been input and abort the application.

Custom
Location?

Figure 13: MATLAB Source Code Flow of Control.

Results
We built an AGV which is controlled from a Base-Station using two way wireless RF communications. We

were able to control the movement of or AGV from the Base- Station inthree ways.
Real-time control using the Base- Station push buttons as input from the user.

Pre-defined path for the AGV to traverse ussng MATLAB to acquire input.
User defined specific coordinates of a point relative to the WCS origin. The AGV traverses to that point.

16

The AGV is capable of achieving accurate travel to a station within a margin of about 3-6 inches over a 48 inch

distance. Some observed sources of error are;

Battery Charge;
Irregularities on the floor such as differences in friction and elevation,
Slight differences in time between the activation of the two servos; and

Inertia of the Boe-Bot (affecting primarily the angle-of-turn accuracy).

Discussion

This section of the report discusses the difficulties we faced in the project and the steps we took to overcome
them. It also discusses the level of success achieved in the project. The initial setup of the project where we
had to assemble the robot and set up the various communication channels was very smooth. We could transmit
and receive data using the channels fairly accurately. Initially we had the IR transmitter mounted on the base
station and the IR receiver on the robot. We realized that since at times the robot leaves the line-of-sight of the
base station, we encountered interrupted communication between the processors. In which case the base station
would leave communication with the robot and will not be able to control it. So we thought of interchanging
the communication setup and had the IR transmitter mounted on the robot and RF transmitter on the Base-
Station. In this case even if our robot is unable to communicate with the Base-Station, the Base-Station could
easily send instructions to the robot using the RF communication and hence if for a while the Base-Station
receives no feedback from the robot, the Base-Station could ask the robot to come back to the Base-Station
But during our laboratory procedures we encountered too many problems having to communicate using the IR

communication channel and decided to replace it with another RF communication set.

In our project we were required to keep the information of the current direction of the robot at all times and
calculate the new direction using vector algebra and trigonometric functions. So the next difficulty we
encountered was that of performing such computations using the Basic Stamp. We tried working our way
through the limitations and were finaly able to get the angle between the current direction vector and the new
direction vector but since the angle we obtain between the vectors is aways acute we had to decide which way
to turn. We were unable to implement our logic and agorithm for computing the direction on the Basic Stamp.
We finally searched through the net and found that we could interface the Basic Stamp with MATLAB through
the serial COM port on the back of acomputer. Interfacing MATLAB with the Basic Stamp also came with its

17

share of difficulties. It took us considerable amount of time to figure out that we were sending data in the
ASCII format using the ‘fprintf’ command. Finaly we figured out the way to send data in binary format using

the ‘fwrite’ command and interfaced MATLAB with the Basic Stamp to handle most of our computation.

Another important feature of our project was having accurate calibration for our servo motors. We needed the
robot to turn the exact number of degrees and travel exact amount of distance as computed through our
algorithm. We realized that our calibration was highly dependent on the strength of the batteries we were using
and hence we needed to calibrate our robot every time before testing. Therefore it was important to calibrate

the servos with new batteries and always have the batteries replaced as they start to die.

In the end, we were very successful at achieving our goal of controlling the AGV. We were able to implement
each of the desired modes of control and were able to calibrate the robot such that it could travel to a destination
location accurately. On rare occasion, our communication paradigm fails and the result is that the robot spins
amogt indefinitely (it would stop eventually if we let it go). What was happening was that the timing between
sends and receives of data was not perfect. So the Base Station would begin receiving data after it had been
partially sent. This happened fairly frequently at first but after properly inserting pauses, we were able to

reduce the occurrence of this problem to approximately once every 20 or so times we ran the program.

Conclusions:

We were able to successfully coordinate the communication between the three processors and as a result, were
able to successfully navigate the Boe-Bot. Though we had some trouble with IR communication, calibration,
and computation on the Basic Stamp, the project went smoothly and no insurmountable difficulties were

encountered.

Contributions:

Each member had a hand in each aspect of thisproject. Some of the code was taken directly from the previous
lab and Stamp Manual experiments. Each member was concerned with properly interfacing the three

processors and each member participated in determining solutions to the difficulties which we encountered.

18

Appendix | : Matlab Sour ce Code

% This is the main entry point for the application.

%1t pronpts the user for the node of operation and then calls the
% appropriate functions to get the process going.

% open the connection with the serial port (RS 232)
[sp, Error] = EstablishCom(' COML', 4800, 120);

if(EBrror == 0)

disp(' ');

di sp(' Enter the node of operation fromthe list below"');
di sp(’ 1: Real-tinme station selection');

di sp(' 2: Pre-programred circuit');

di sp(' 3: User input destination');

OpMode = input(': ');

i f((CpMode > 3) | (CpMode < 1))
disp('Invalid node of operation.');
el se

% These are the initial direction and |ocation of the robot.
NewLoc [0, 0O];
NewDi r [-1, 0];

% this comrunication tells the stanpworks kit which node has been chosen
bs_fwite(sp, OpMde, 'uintl6', 'async');

% execute this loop for as long as no errors occur.
while (Error == 0)

swi tch QpMbde
case 1,
% Use buttons on stanpworks to choose stations
Station = WiitForStation(sp);
[NewLoc, NewDir, Error] = TraverseStations(sp, Station, NewLoc, NewDir);
case 2,
% Al |l ow user to input stations which will then be traversed in order
Stations = RetrieveStations;
[NewLoc, NewDir, Error] = TraverseStations(sp, Stations, NewLoc, NewDir);
case 3,
% Al l ow the user to input a destination x,y location and go to it
[X, y] = RetrievelLocation;
[NewLoc, NewDir, Error] = GoToLocation(sp,X, y, NewLoc, NewDir,1);

end
end
end
end
% cl ose the connection with the serial port (RS- 232)
fcl ose(sp);

19

function bs_fwite(com value, prec, node)

% This function handl es the actual witing of bits to the RS-232 serial port.
%It is required that values be small enough for 16 bit representation. It sends
% the data out one byte at a tine and checks for a verificaion of transm ssion reply.

% Check for 16 bit overrun
i f(val ue > 65535)

error('Value too large in bs_fwite. 65,535 nmax');
end

% Wite out the first 8 bits and wait for the port to free up
fwite(com value, prec, node)

whil e(strcnp(get (com ' TransferStatus'), 'idle') ~= 1)

end

% Wite out the second 8 bits and wait for the port to free up
fwite(com bitshift(value, -8), prec, node)

whil e(strcnp(get(com 'TransferStatus'), 'idle') ~= 1)

end

% get verification
fscanf(com '%"');

function Angl e = Conput eAngl e(currd, nextd)

% This function conputes the angle in radians between the two input vectors.
%It requires that the vectors be of length 2 neaning x,y.

if(length(currd) ~= 2)

error('Current Direction Must Contain 2 Entries');
end
if(length(nextd) ~= 2)

error('Next Direction Mist Contain 2 Entries');
end

Angl e = acos((nextd*currd') / (norn{currd)*norm nextd)));

function Angl Cycl es = Conput eAngl eCycl es(Angl e, TurnDir)

% This function converts the Angle in radians into the angle cycles required by the robot

[m b] = GetAngl eCycl eCoeffs;

Angl Cycles = max([nFAngle - b, 0]);

20

servos.

function TurnDir = ConputeDirection(CQurrentDir, NextDr, Angle)

% Thi s function determ nes which direction to turn. That infornmation cannot be determne while

% cal culating the Angle. It is deternined here by conparing a unit vector in the current direction
%rotated positively by "Angle" about the z-axis to a unit vector in the known new direction. The
%rotation is conputed using the standard rotation transformation matri x.

% Positive rotation amounts to a left hand turn and negative to a right hand turn.
TurnDir = 0;

% Verify the inputs
if(length(QurrentDir) ~= 2)
error('Current Direction Must Contain 2 Entries');
end
if(length(NextDir) ~= 2)
error('Next Direction Must Contain 2 Entries');
end
if(length(Angle) ~= 1)
error(' Angle Mist be a Scalar');
end

% Cal cul ate the unit vector in the current and next direction.
curruv = CurrentDir./norm(CurrentDir);
nextuv = NextDir./nornm(NextDir);

% find the rotation of +Angle about the z-axis
tenmppt = ([cos(Angle), -sin(Angle); sin(Angle), cos(Angle)] * curruv')';

%if the uv's match up, we have positive rotation and we turn left. Qherw se right.
i f(ourround(tenppt, 12) == ourround(nextuv, 12))

TurnDir = 1; % Turn Left
el se

TurnDir = O; % Turn Ri ght
end

function D stCycles = Conput eDi stanceCycl es(I| nches)
% This function conputes the Distance in inches to cycles required by the robot servos.

[m b] = GetD stanceCycl eCoeffs;
Di st Cycl es = max([nflnches + b, 0]);

21

function [Angl Cycles, DistCycles, TurnDir, NewDir] = DirectionCal c(NewLoc, CurrentlLoc, CurrentDir);

% This function encapsul ates the conputati on of the new direction data.
% used but the data of prinmary interest is returned.

% figure out the next_*'s for the new station fromthe current station.
NewDi r = NewLoc- Current Loc;

% Get the angl e between the current and next directions
Angl e = Conput eAngl e(CurrentDir, NewDir);

% Figure out which way to turn, left or right
TurnDir = ConputeDirection(CurrentDir, NewDir, Angle);

% Convert the angle fromradians into notor cycles.
Angl Cycl es = round(Conmput eAngl eCycl es(Angle, TurnDir));

% Conput e the distance that nust be travel ed
Di stance = norn{NewLoc - CurrentlLoc);

% Convert the distance frominches into notor cycles
Di st Cycl es = round(Conput eD st anceCycl es(Di st ance));

22

Sone interimdata is

function [conm Error] = EstablishComrport, baud, tineout)

% Thi s function establishes comunication with the base station through the serial

% desi gnated by port.

Error = 0;

% Qpen the serial port for comunication with the base station
conm = serial (port, 'BaudRate', baud);

f open(com) ;

% al | ow ti meout seconds between inputs
set(comm 'Tinmeout', timeout);

Continue = 1;
whi | e(Conti nue == 1)

% Alert the user that we are trying to establish comrunicaiton.
disp('Attenpting to establish communication with the Basic Stanp..."');

% Verify comuni caiton with the base station
[A COUNT, V5@ = fscanf(comm "'%');

%if fscanf failed, the reason will be indicated within MG
if(length(MBG == 0)

di sp(' Comuni cati on established, receiving data..."');
Conti nue = 0;
Error = 0;
el se
di sp(' Communi cati on was not established. The follow ng nessage was returned:'
disp(' ");
di sp(MsG) ;
disp(" ');
di sp(' How woul d you like to proceed:');
di sp(' 1. Try again');

di sp(’ 2: Abort');

ToDo = input(': ');
swi tch ToDo

case 1,

disp(' Trying Again...');
Continue = 1;
case 2,
Error = 1;
Continue = 0;
ot herw se
Error = 1;
Conti nue = 0;
end
end
end

23

port

function Error = ExecuteMove(Port, Angl Cycles, DistCycles, TurnDr, LastStation)

% Thi s function executes the provided nove instructions by sending themto the base
% station to be passed on to the bot.

% Send the noving instructions back to the base station.
bs fwite(Port, LastStation, 'uintl6', 'async');
Qur Pause(0.1);

bs fwite(Port, TurnDr, 'uintl6', 'async');
Qur Pause(0.1);

bs_fwite(Port, AnglCycles, 'uintl6', 'async');
Qur Pause(0. 1) ;

bs fwite(Port, D stCycles, 'uintl6', 'async');

% Wit to recieve word that robot has reached its destination.
Error = Vit For StationReached(Port);

function [m b] = Get Angl eCycl eCoef f s()

% This function is the only place in which these coefficients are defined.
%It exists to sinplify changes in calibration because these coefficients are
% used in nore than one place but always retrieved fromhere.

= 15. 5555555;
= -0.28888888;

function [m b] = CetD stanceCycl eCoeffs()

% This function is the only place in which these coefficients are defined.
%It exists to sinplify changes in calibration because these coefficients are
%used in nore than one place but always retrieved fromhere.

m= 6. 765;
b = -1.96;

24

function [NewLoc, NewDir, Error] = GoToLocation(Port, x, y, QurrentLoc, CurrentDir, LastStation)

% This function prepares to tell the robot to go to location x,y

% CGet the new location fromthe Stations array
NewLoc = [x, Vy];

NewDir = CurrentDir;

Error = 0;

% Make sure that the provided x,y are not the coordinates of the current position.
argl = ourround(CurrentLoc(1),1) ~= ourround(NewL,oc(1),1);

arg2 = ourround(CurrentLoc(2),1) ~= ourround(NewLoc(2),1);

if(argl | arg2)

% Let the user know that a request has been received.
di sp(sprintf(' Calculating nove to location: %, %', x, y));

% Conput e the nove anounts and the new direction

[Angl Cycl es, DistCycles, TurnDir, NewDir] = DirectionCal c(NewLoc, CurrentlLoc, CurrentDir);

% Send the data to the Basic stanp to execute the conputed nove.
Error = ExecuteMove(Port, Angl Cycles, DistCycles, TurnDr, LastStation);

% Use the actual cycle data to estimate the final |ocation and direction of
% the bot as accurately as possible. This is done to try to help account for
% nuneri cal roundoff.

[m b] = GetAngl eCycl eCoeffs;
i f (round(Angl Cycl es) == 0)
Actual Angle = 0;
el se
Actual Angle = (Angl Cycles - b) / m
end

% comput e actual nextd used by bot based on actual angle
if(TurnDir == 0)

Act ual Angl e = - Act ual Angl e;

end

rmat = [cos(Actual Angl e), -sin(Actual Angl e); sin(Actual Angle), cos(Actual Angle)];
NewDir = (rmat * (CurrentDir./norm(CurrentDir))')";

% conput e actual distance in sanme fashion.

[m b] = GetD stanceCycl eCoeffs;
if(round(D stCycles) == 0)
Actual D stance = 0;
el se
Actual Distance = (DistCycles - b) / m
end

% the nost accurate NewLoc we can figure is the actual distance in the new direction + the current

NewLoc = Actual Di stance*NewDir + Current Loc;
end

25

posi tion.

function [NewLoc, NewDir, Error] = GoToStation(Port, Station, CQurrentLoc, CurrentDir, LastStation)

% Thi s function keeps track of where each station is in world coordinates. It uses that infornation
%to pass along the command to travel to a particular station.

NewLoc = CurrentLoc;
NewDir = CurrentDir;
Error = 0;

% make sure that a valid station has been input.
if((Station >8) | (Station < 1))

disp(sprintf('lInvalid station (%) passed into GoToStation function.', Station));

Error = 1,
el se

Stations = [1, 0O; cos(pi/4), cos(pi/4); 0, 1; -cos(pi/4), cos(pi/4); -1, 0; -cos(pi/4), -cos(pi/4);

1; cos(pi/4), -cos(pi/d)] * 24

[NewLoc, NewDir, Error] = CoTolLocation(Port, Stations(Station, 1), Stations(Station, 2), CurrentLlLoc,
CurrentDir, Last Station);
end

0,

function res = ourround(X, ndp)

% Thi s function rounds each elenment of X to ndp decinmal points. It is useful to
% reduce the problens of nunerical roundoff. W can conpare two X,y sets without
% worryi ng about differences of hundredths of an inch for exanple.

res = zeros(length(X));

for i=1:1ength(X)
if(X(i) >0)
res(i) = floor((X(i) * 10”ndp)+0.5) / 10”ndp;
el se
res(i) = ceil ((X(i) * 10~ndp)-0.5) / 10"ndp;
end
end

26

function [x, y] = RetrievelLocation()

% This function is used to retrieve x,y coordinates fromthe user in the case of
% nmode 3 which is "User |nput Destination".

% get the x coordinate.
disp(" ');
di sp(' Enter the x coordinate of the desired |ocation (-100 to 100):"');

chosen = 0;
valid = 0;
X = 0;
y = 0;

%l oop until a valid input is received
while(valid == 0)

chosen = input(': ");
if((chosen > 100) | (chosen < -100))
di sp(' Pl ease enter a val ue between -100 and 100.");
el se
X = chosen;
valid = 1;
end
end

% get the y coordinate.
disp(' ");
di sp(' Enter the y coordinate of the desired |ocation (-100 to 100):"');

chosen = 0;
valid = 0;

%again, loop until a valid input is received
while(valid == 0)

chosen = input(': ");
i f((chosen > 100) | (chosen < -100))
di sp(' Pl ease enter a val ue between -100 and 100.'");
el se
y = chosen;
valid = 1;
end
end

27

function Stations = RetrieveStations()

% This function takes in any nunber of stations to be part of a circuit.
%It checks for valid inputs and stores and returns themin Stations.

disp(' ');
di sp(' Enter station nunbers (1-8) to be traversed. Enter a O when done.');

chosen = 9;
stationct = 1;
Stations = 0;

% keep accepting stations until a O is entered.
whi | e(chosen ~= 0)

chosen = input(': ");
if((chosen > 8) | (chosen < 0))
disp('Valid station entries are 1-8 only."');
el sei f (chosen > 0)
Stations(stationct) = chosen;
stationct = stationct + 1;
end
end

function [NewLoc, NewDir, Error] = TraverseStations(Port, Stations, InitiallLoc, InitialDr)

% This function is used to send along the stations fromStations one at a tinme.

NewLoc = Initial Loc;
NewDir = InitialDr;
Error = 0;

% Do for each station in Stations.
for i=1:1ength(Stations)

% i ssue the station change conmmand.
Last Station = i==length(Stations);

% | ssue the GoToStation for the current station.
[NewLoc, NewDir, Error] = GoToStation(Port, Stations(i), NewLoc, NewDir, LastStation);

% Check to see that the station change conpl eted successfully.

if(Error ~= 0)
disp(sprintf('Station % was not reached, aborting.', Stations(i)));
br eak;

end

end

function Station = WiitForStation(Port)

% This function waits for word fromthe stanpworks kit indicating the next station to conpute directions for.
di sp(' Awai ting Station Change...');

% Communi cati on should be the id of the next station or an error.
Station = fscanf(Port, '%"');

28

function Error = Wit For St ati onReached(Port)

% This function waits for Port. Timeout for word that the robot has reached its destination.
% I|f word is not recieved, the user has the option to wait |onger or abort.

di sp(' Waiting For Move Conpletion..."');

Conti nue = 1;
Error = 0;
whi | e(Conti nue == 1)

% \Wait for the reply.
[Error, COUNT, M5SG = fscanf(Port, '%"');

if((Error ~= 10) & (Error ~= 11))

disp('Illegitimte nmessage received while waiting for bot response.');
end
Error = Error - 10;

%if fscanf fails (like with a timeout), MSGw Il contain the error. Show it and offer options.
if(length(MBG ~= 0)
di sp(' Confirmation for station reached not received fromthe Bot. The follow ng nmessage was
returned:');

disp(* ');
di sp(MsG ;
disp(* ');
di sp(' How woul d you like to proceed:');
di sp(" 1: Try again');
di sp(' 2: Abort');
ToDo = input(': ');
swi tch ToDo
case 1,
disp(' Trying Again...");
Continue = 1;
case 2,
Error = 1;
Conti nue = 0;
ot herwi se
Error = 1;
Conti nue = 0;
end
el se
Conti nue = 0;
end

end

29

Appendix I1:

PBasic Sour ce Code For Robot

" { $STAVP BS2}
' {$PORT COMR}

R GHT CON 0

LEFT CON 1

Ri ght ServoPin CON 13

Left ServoPi n CON 12
Direction VAR Bi t

Angl Cycl es VAR Wor d

Di st Cycl es VAR Wor d
DoneMovi ng CON 1
I nstructionsRecei ved CON 2
Index VAR Wword

BAUDRF CON 16780

Do leading initialization
GOSUB Dol nitializaiton

Thi s bl ock of code continuously checks for instructions from

' the base station.

GOSUB Wi t For I nstruction

GOSUB Reportlnstructi onRecei ved
GO0SUB DoRot ati on

GOSUB DoMbveFor war d

GOSUB Report Fi ni shedMovi ng
GOTO Mai n

' This block of code continuously checks in 1 second increnents

for instructions to be recieved.
' a message that it
base is waiting for that nmessage.

Bef ore each check,
is waiting for instructions just

it sends
in case the

Wi t For | nstructi on:
SERI N 0, BAUDRF,
D st Cycl es. H ghByt €]
PAUSE 50
RETURN

[Vl T(" A,
Wait for ASC I

Direction,

Angl Cycl es. LowByt e, Angl Cycl es. H ghByt e,
letter A

This bl ock of code executes a rotation in the specified direction

' for the specified nunber of cycles.

.......................................

DoRot at i on:

||||||||||||||||||||||||||

out put the nunber of cycles indicated by Angl Cycles in Drection
| F(Angl Cycl es = 0) THEN Fi ni shRotat e

I F(Direction = LEFT) THEN Rot atelLeft
Rot at eRi ght :
FOR I ndex = 1 TO Angl Cycl es
PULSQUT Left ServoPin, 1000
PULSQUT Ri ght Ser voPi n, 1000
PAUSE 20
NEXT
PAUSE 500

GOTO Fi ni shRot ate

30

Di st Cycl es. LowByt e,

Rot at eLeft:
FOR I ndex = 1 TO Angl Cycl es
PULSQUT Left ServoPi n, 500
PULSOUT Ri ght Ser voPi n, 500
PAUSE 20
NEXT
PAUSE 500
Fi ni shRot at e:
RETURN

This bl ock of code executes a forward nove for the specified
" nunber of cycles.
DoMoveFor war d:
FOR I ndex = 1 TO Di st Gscl es
PULSQUT Left Ser voPi n, 908
PULSOQUT R ght ServoPi n, 500
PAUSE 20

' This block of code sends the nessage that instuctions have been
recei ved.
Report | nstructi onRecei ved:
PAUSE 200
SERQUT 1, BAUDRF, ["B", | nstructi onsRecei ved]
RETURN

' This bl ock of code sends the nessage that no noving is going on
right now (the robot is idle).
Repor t Fi ni shedMovi ng:
PAUSE 100
SEROUT 1, BAUDRF, ["B", DoneMbvi ng]
RETURN

This is block of code does the initializaiton that is necessary
' at program startup.
Dol nitializaiton:
DIRS = 94111111111111110
Low Left ServoPi n
Low Ri ght ServoPi n
Index = 0
RETURN

31

Appendix |11: PBasic Source Code For Robot

" { $STAVP BS2}
' {$PORT COMR}

Wai ti ng OON 9
BotIsWiting VAR Bit

FALSE QOON
TRUE QON

= O

Baud48 CON 188
RxD CON 12
TxD CON 13

RIGAT QOON 0
LEFT CON 1

Fr onBot Pi n CON 14
ToBot Pi n CON 15
Stationl CON 1
St ati on2 CON 2
Station3 CON 3
St ati on4d CON 4
Stati onb CON 5
Stati on6 CON 6
Station7 CON 7
Station8 CON 8
NoBot CON 11

St ati onReached CON 10
ReadVariable VAR Wor d
Bot Response VAR N b

Count er VAR N b
Next St ati on VAR N b

Last Stati on VAR Bit

Direction VAR Bi t
Angl Cycl es VAR Wor d
Di st Cycl es VAR Wor d

Butt onOTri gger VAR Wor d
ButtonlTri gger VAR Wor d
Butt on2Tri gger VAR Wor d
But t on3Tri gger VAR Wor d
Butt on4Tri gger VAR Wor d
But t on5Tri gger VAR Wor d
Butt on6Tri gger VAR Wor d
Button7Tri gger VAR Wor d

BAUDRF CON 16780

' Do leading initialization
GOSUB Dol nitialization

Find out which node of operation to use
G0SUB ReadMat | abl nput

The user will input desired stations one at a tine.
| F(ReadVari abl e = 1) THEN MoveReal Ti me

The user will put in a circuit of stations to be traversed
| F(ReadVari abl e = 2) THEN MovePr eDef i ned

32

' The user will specify a customx, y location to go to.
| F(ReadVari abl e = 3) THEN MoveUser Locati on
This bl ock of code continuously checks for button hits in order

' to facilitate the real tinme station selection node.
MoveReal Ti ne:

| F(Bot I sWaiting = TRUE) THEN Ski pNext Li ne_2

G0sUB Wi t For Bot Fi ni shbveMessage

Ski pNext Li ne_2:

GOTO CheckBut t ons

Ret ur nFr om_CheckBut t ons:

GOTO MoveReal Ti me

' This block of code keeps | ooping and retrieving the next station
frommatlab until the last station flag is set to facilitate the

' circuit of stations node.
MovePr eDef i ned:

| F(Bot | sWaiting = TRUE) THEN Ski pNext Li ne_4

G0SUB Wi t For Bot Fi ni shbveMessage

Ski pNext Li ne_4:

IF (LastStation = TRUE) THEN Fi ni shPreDefi nedMoves

GOSUB St at i onChange

GOTO MovePr eDef i ned

Fi ni shPreDef i nedMoves:
Last Stati on = FALSE
GOTO MovePr eDef i ned

' This block of code keeps |ooping and retrieving the next user
i nput nmove change to facilitate the customx, y |ocation node.

MoveUser Locat i on:

| F(Bot I sWaiting = TRUE) THEN Ski pNext Li ne_5

GO0SUB Wi t For Bot Fi ni shbveMessage

Ski pNext Li ne_5:

GOSUB St at i onChange

GOTO MoveUser Locat i on

LI T T T T T T T T T O T T B B T B T B T T T T T S T S T T B T S T I T S SR R B N R B R B

This bl ock of code is used to when buttons get pressed. Wen a
" button is pressed, it indicates time to nove to a new station.
CheckBut t ons:
BUTTON 0, 0, 255, 255, ButtonOTrigger, 1, OnButtonO
Ret ur nFr om_OnBut t onO0:

BUTTON 1, 0, 255, 255, ButtonlTrigger, 1, OnButtonl
Ret ur nFr om OnBut t onl:
BUTTON 2, 0, 255, 255, Button2Trigger, 1, OnButton2
Ret ur nFr om OnBut t on2:
BUTTON 3, 0, 255, 255, Button3Trigger, 1, OnButton3
Ret ur nFr om OnBut t on3:
BUTTON 4, 0, 255, 255, Button4Trigger, 1, OnButton4
Ret ur nFr om OnBut t on4:
BUTTON 5, 0, 255, 255, Button5Trigger, 1, OnButtonb
Ret ur nFr om_OnBut t on5:
BUTTON 6, 0, 255, 255, Button6Trigger, 1, OnButton6

Ret ur nFr om OnBut t on6:

33

BUTTON 7, 0, 255, 255, Button7Trigger, 1, OnButton7
Ret ur nFr om OnBut t on7:
GOTO Ret ur nFr om CheckBut t ons

" This block of code is called in response to a press on button O.
" It causes novenent to station 1.
OnBut t on0:

Next Station = Stationl

GOSUB OnSt at i onChange

QOTO Ret ur nFr om OnBut t on0

R I A R R A R A R B R B B S R B R B R A A B S R A R A R A R AR B B SR BRI

' This block of code is called in response to a press on button 1.
" It causes novenent to station 2.
OnBut t onl:

Next Station = Station2

G08UB OnSt at i onChange

QOTO Ret ur nFr om OnBut t onl

' This block of code is called in response to a press on button 2.
" It causes novenent to station 3.
OnBut t on2:

Next Station = Stati on3

G08UB OnSt at i onChange

GOTO Ret ur nFrom OnBut t on2

This block of code is called in response to a press on button 3.
It causes novenent to station 4.

OnBut t on3:

Next Station = Station4

G08UB OnSt at i onChange

QOTO Ret ur nFrom OnBut t on3

This block of code is called in response to a press on button 4.
' It causes novenent to station 5.

OnBut t on4:

Next Station = Stati on5

G08UB OnSt at i onChange

GOTO Ret ur nFrom OnBut t on4

[T T T B T T T T T B T T B T B T B T T T ST T B T T T S T N S T I T B S B B R B B I N SR SR B

This block of code is called in response to a press on button 5.
' It causes novenent to station 6.

OnBut t on5:

Next Station = Stati on6

G0sUB OnSt at i onChange

GOTO Ret ur nFr om OnBut t on5

This bl ock of code is called in response to a press on button 6.
" It causes novenent to station 7.

R R I R B A R B T B R B R S T B R B A R B R B B SR B B A R AR S R A A

OnBut t on6:

Next Station = Stati on7
G08UB OnSt at i onChange
QOTO Ret ur nFrom OnBut t on6
This block of code is called in response to a press on button 7.
' It causes novenent to station 8.
OnBut t on7:
Next Station = Station8
G0sUB OnSt at i onChange
GOTO Ret ur nFrom OnBut t on7

This label is used when the station change is initiated from
' the stampworks kit. It tells Matlab which station to conpute.
OnSt at i onChange:
Send the new desired station info to matlab for directional
PAUSE 100
SERQUT TxD, Baud48, [DEC Next Station, 10]

This label is used to retrieve the noving instructions conputed
' by Matl ab.
St ati onChange:
Get the results frommatlab
G0sUB ReadMat | abl nput
Last Stati on = ReadVari abl e

G0SUB ReadMat | abl nput
Direction = ReadVari abl e

GOSUB ReadMat | abl nput
Angl Cycl es = ReadVari abl e

G0SUB ReadMat | abl nput
D st Cycl es = ReadVari abl e

This is where the instructions are sent to the bot. This may
' be called for the initial send or for resend operations.

|||

ResendMovi ngl nstructi on:

Send the new instructions to the robot.
G0SUB SendMovi ngl nst ruct i onToBot

' Wit for verification that bot has reached its destination
G0SUB Wi t For Bot Recei veMessage
RETURN

|||

' This is block of code reads in a single word sized variable from
' Matlab which will be sending it in 2 byte sized chunks. The
' pause is necessary b/c matlab is actually sending a word and so
" it must be given tine to finish sending the remaining 8 bits.
ReadMat | abl nput :

ReadVariable = 0

SERIN RxD, Baud48, [ReadVari abl e. | owbyt €]

Pause 10

SERIN RxD, Baud48, [ReadVari abl e. hi ghbyt e]

PAUSE 100

SERQUT TxD, Baud48, [DEC TRUE, 10]
RETURN

35

processi ng

This is block of code is called if SERIN tinmes out while waiting

' for the bot to respond that it received its instructions.
MoveMessageNot Recei ved:

DEBUG "Not Received..", CR

Counter = Counter + 1

| F(Counter < 3) THEN Ski pNextLine_1

Bot | s\Witing = TRUE

GOTO Bot Not Respondi ng

Ski pNext Li ne_1:

DEBUG "Sending Again..", CR

GOTO ResendMovi ngl nst ruct i on

' This is block of code is called if SERIN tines out while waiting
for the bot to respond that it has finished noving.

DoneMessageNot Recei ved:

DEBUG "Not Received..", CR

Counter = Counter + 1

| F(Counter < 3) THEN Ski pNextLi ne_3

Bot | s\Waiting = TRUE

GOTO Bot Not Respondi ng

Ski pNext Li ne_3:

DEBUG "Wiiting Again..", CR

GO0SUB Wi t For Bot Fi ni shbveMessage

I B B R B R R B B R R R B R B S R N R R R S R A R B R R S B R AR B R B R B R BN BN B S R B R B R B S R SR BRI

This is block of code sends the 3 pieces of noving information
necessary for novenent to the bot. The required info is:
Direction - Turn left or right
' Angl Cycles - How nmuch to turn
' DistCycles - How far to go forward
SendMovi ngl nstructi onToBot :
DEBUG " Sendi ng Move Instruction..", CR
PAUSE 100
SERQUT ToBot Pi n, BAUDRF, [TRUE, " A", Directi on, Angl Cycl es. LowByte, Angl Cycl es. Hi ghByte,
Di st Cycl es. H ghByt e]
RETURN

This is block of code waits for 60 seconds for the bot to finish
" nmoving and respond as such. It will time out once (after 30
seconds) before an error state is entered.
Wi t For Bot Fi ni shMoveMessage:
DEBUG "Wi ting For Finish Myving Message. ."
SERI N Fr onBot Pi n, BAUDRF, 30000, DoneMessageNot Recei ved, [WAIT("B"), Bot Response]
DEBUG "Recei ved..", CR
Counter = 0
Bot | s\Waiting = TRUE
PAUSE 100
SERQUT TxD, Baud48, [DEC StationReached, 10]
RETURN

This is block of code waits for 6 seconds for the bot to respond
' that it has received its instructions. It will time out tw ce
(every 2 seconds) before an error state is entered.
Wi t For Bot Recei veMessage:
DEBUG "Waiting For Moving Instruction Verification.."

36

Di st Cycl es. LowByt e,

RETURN

SERI N Fr onBot Pi n, BAUDRF, 2000, MyveMessageNot Recei ved, [WAIT("B"),

DEBUG "Received..", CR
Counter =0
Bot | sWai ting = FALSE

This is block of code is called if the bot does not respond properly
within the specified anount of tine for an action.

Bot Not Respondi ng:

DEBUG "Bot is not responding..", CR
PAUSE 100

SEROUT TxD, Baud48, [DEC NoBot, 10]
Counter = 0

GOTO MoveReal Ti e

This is block of code does the initializaiton that

at program start up.

...

Dol nitialization:

RETURN

DIRS = 9%4010111100000000

DEBUG " Est abl i shi ng Communi cation Wth Matl ab. ..

PAUSE 100

SERQUT TxD, Baud48, [DEC Waiting, 10]
Next Station = Stationl

Bot | s\Waiting = TRUE

Counter =0

Last Stati on = FALSE

i s necessary

37

Bot Response]

