
University at Buffalo

Department of Mechanical and Aerospace Engineering
MAE 576: Mechatronics

Spring 2003

Project Report

Temperature Sensing Robot

Submitted by:
Rajendra Agrawal

Govindarajan K Srimathveeravalli
Rageesh J Britto

William J Mitchell
Gopikrishnan Sidrardhan

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 1

Index of Contents

1. Abstract

2. Introduction

3. Objectives & Goals

4. List of Components and Cost Estimate

5. Component and Circuit Discussion

5.1 Communication Set up, IR and RF circuits

5.2 Set up of the Base Station

5.3 Mobot set up

5.4 Collision Detection

5.5 Temperature Sensing

6. Application Note

6.1 Problems faced

6.2 Commands Used

7. Working of the program

8. Results and Conclusion

9. Contribution by each Team Member

10. Flow Charts

11. Source Code

12. Circuit Diagram

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 2

Abstract

The aim of this project is to create a mobot for remote operation, which either can
function autonomously or can be controlled by a human operator. The mobot is built with two
way communication capability. The communication from base station to the mobot is
achieved using RF communication and the feedback from the mobot to the base station is
given through an IR communication channel. The mobot can be actively controlled in real
time by the user who is located in the base station. The mobot is aimed to serve as the “hands
and eyes” of the user in a potentially hostile environment where direct physical presence of
the user is not possible. The mobot is calibrated to travel in fixed increments, and visual
feedback as to the distance moved is made available to the user using the LCD. Hence by
using it the user can actively map the terrain covered. Also, even when under direct control of
the user, the mobot is built to actively detect and avoid collisions. In the autonomous mode
the mobot will travel a preprogr ammed path heading towards a specific direction and will
actively avoid collisions. The additional feature of this mode is that the robot will keep track
of the path it has traversed and then can retrace its path back to the base station. The mobot
has a temperature sensor on board which can be operated either using the base station or
whenever a collision occurs. This facility is aimed at providing the mobot with a means to
detect human presence in the environment mapped.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 3

Introduction

Even though the final product of this project is the mobot and its base station which
acts as its remote controller, the aim of this project is verily different. Microprocessor based
systems have become commonplace now in our lives. However, we would find very few such
applications where currently only a single microprocessor is used; another fact is that most of
the times necessity would arise for the microprocessor of one syst em to communicate with
that of another. Based on these observations it can be concluded that it would be of great
instructional value to understand the dynamics of working and communicating with multiple
microprocessors in a given environment. Furthermore, it would be more interesting to
understand about wireless communication rather than communication using wired means.
The reason being that, most microprocessors in a given environment may not be readily
accessible using wired means. The microprocessors in concern are the 2 Basic Stamps, one
mounted on the mobot and the other serving as the base station. In addition, there are multiple
modes of communication available for use in this scenario. It becomes necessary to evaluate
the various modes of communication and determine the strengths and weaknesses of each
one. This forms the actual motivation of the project, the building of the mobot and having fun
in the process is just a windfall.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 4

Objectives and Goals

The goals and objectives of this project can be split two fold. The first being the
objectives where in something of definite value is learned by doing. The goals will chalk out
the roadmap for the project which would eventually transcend into something concrete which
can be marketed as a concept or as a product.

The Objectives of the project are:

• Establish distributed sensing and control through wireless media between the mobile
robot and the base station.

• Coupling using wired and wireless means. Use of IR and RF channel for
communication.

• Creation of intelligent remote sensor using the mobot as the basis.
• Create remote control over the mobot.
• Integration of multiple processors in a given environment.
• Understand use of SERIN and SEROUT command.

The tangible goals of this project are:

• Creation of a mobot whose motion is controlled by the interfaced buttons in the base
station.

• Use the mobot as a remote sensor to gather temperature data of the given
environment.

• Make the mobot autonomous and using the onboard IR sensor enables collision
detection. Make it intelligent to head for a particular direction and trace its path back
to the base station.

• Enable two-way communication, RF to send commands to the mobot and use the IR
set up to provide feedback to the base station.

• Use the LCD interface as a means of getting visual data from the robot, will help
enable to map the path of the robot.

• Calibration of the mobot to move in predetermined steps. Implementation of open
loop control.

• Option of Pre-Programming of the mobot to move along a set path or curve.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 5

List of Components and Cost Estimate

Serial # Name of the Component

Quantity

Used
Price

1 Basic Stamp II Kit 1 the Kit

2 Basic Stamp BOE Kit 1 (Included in the kit)

3 IR Transmitter (Firestick) / Receiver 1 of each
type

(Included in the kit)

4 RF Transmitter / Receiver 1 of each
type

(Included in the kit)

5 Antenna for RF communication 2 (Included in the kit)

6 Matrix Orbital LCD, LCD1621 1 (Included in the kit)

7 IR LED 2 (Included in the kit)

8 IR Photo Detector 2 (Included in the kit)

9 Various Resistors 4 (Included in the kit)

10 Extra Breadboard 1 (Included in the kit)

11 DS 1620 1 (Included in the kit)

12 1.5 v Batteries 4 $4 (bought 8 batteries
for the whole project)

13 9 v Batteries 1 $4 bought one for the
entire project

14 BASIC Stamp II module 1 (Included in the kit)

15 300 mA 9 VDC power supply 1 (Included in the kit)

16 Serial cable 1 (Included in the kit)

17 infrared receiver (Panasonic PNA4602M) 2 (Included in the kit)

18 infrared LEDs covered with heat shrink
tubing (QT QEC113)

2 (Included in the kit)

19 4-40 x 3/8”machine screws 8 (Included in the kit)

20 1" polyethylene ball, pre-drilled 1 (Included in the kit)

21 o-ring tires 2 (Included in the kit)

22 Boe-Bot plastic machined wheels 2 (Included in the kit)

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 6

23 4-40 x 3/8” flathead machine screws 2 (Included in the kit)

24 Boe-Bot aluminum chassis 1 (Included in the kit)

25 1/16" x 1.5” long cotter pin 1 (Included in the kit)

26 4-40 locknuts 10 (Included in the kit)

27 13/32" rubber grommet (fits ½” hole) 1 (Included in the kit)

28 9/32" rubber grommet (fits 3/8” hole) 2 (Included in the kit)

29 Battery holder with cable and barrel plug 1 (Included in the kit)

30 Parallax pre-modified servos 2 (Included in the kit)

The whole project was assembled and executed using the equipment given in the kit

itself. Additional expense of any sort was avoided. For commercial implementation of any
product, care must be taken to maximize the cost to utility difference. That is for minimum
cost maximum utility must be extracted from the device.

Component & Circuit Description

As any other application built so far, this set up also consists of many individual circuits
and components. The various circuits used in the set up are:

• Communication Set up, IR and RF circuits.

• Set up of the Base Station.

• Mobot set up.

• Collision Detection.

• Temperature Sensing.

• LCD circuit

RF communication:

RF communication forms the primary means of communication in this set up and
helps the passage of commands from the base station to the mobot. The primary advantages
of using a RF communication set up is linked to the ease of use, the wide area of
communication (unlike the IR there is no need for line of sight here), the range (over 100
feet) and it does not need a dedicated power source (unlike the IR which ate up a 9v battery).

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 7

 The downside of using a RF set up for communication is that it is preferable to have
encoding to enable safe and complete transit of data.

The RF circuit consists of two sub-c ircuits, one is for the receiver and the other is for
the transmitter. In this project, the transmitter is mounted on the base station and the receiver
is on the mobot.

The set up of the receiver is as follows:

Figure 1 RF receiver, Source: http://www.rentron.com/Stamp_RF.htm

The above diagram is a general representation of the circuit. Here there is major

deviation from the diagram that instead of pin 2, pin 3 is connected to the Basic Stamp
through a resistance. The key difference is that the pin number 2 is said to be used for digital
data output and the pin number 3 is used for linear data output. It is connected to pin number
2 only if connected through an encoder set up, otherwise pin number 3 is preferred. The rest
of the circuit is connected in the same manner. In conjunction with this circuit, we use the
SERIN command to take the incoming signal from the transmitter on the base. The set up
also requires an antenna each on both ends.

The other end of this circuit is a transmitter. It is mounted on the base station. The
base station in this case is interfaced with a number of buttons. Upon pressing each button a
different message is released using the SEROUT command, and based on the message sent a
particular operation is carried out by the mobot. Given below is a general representation of
the transmitter.

Figure 2 RF transmitter, Source: http://www.rentron.com/Stamp_RF.htm

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 8

There is again a small error associated with the above diagram, the picture above is

only representative and does not match with the actual component used in the base station.
However, the circuit connections remain the same. Pin 2 is used to link the transmitter with
the basic stamp and the rest of the pins are connected as shown in the diagram. The signal
from the transmitter is used SEROUT command. The connection itself is set up on par at
1200 baud.

IR communication

The IR communication is set up using the given a Fire-Stick and Receiver for the IR
signal. In the given scenario, it is desired that we receive proper feedback or receive data
from the mobot that it has sensed/detected. To achieve the same the IR communication set up
is used. IR set up though commonly used has some inherent problems, like line of sight, use
of a separate power source and noise due to other thermal sources. Inspite of these problems
the IR set up is commonly used in many applications including the common TV remote. Here
again the SERIN and SEROUT commands used to enable the communication to occur.

As mentioned before the transmitter of the IR communication set up is mounted on
the robot. A representational diagram of the same is as given below. The actual circuit on the
mobot is connected in a similar fashion, though the middle pin is left free and is not
connected to anything as such. The Firestick gave a very good response and functioned well
even if the receiver/sensor was placed at 1800. Additionally the range of the sensor was
around 80 feet and the time lag in giving feedback was not large.

Figure 3 IR transmitter, Source: http://www.rentron.com/FS-2.htm

The IR receiver was mounted on the base station. A representational circuit diagram

of the same is given below. The actual pin set up is also as given in the diagram.

Figure 4 IR Receiver: http://www.rentron.com/FS-2.htm

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 9

Set up of the Base Station

The base station serves three purposes in this project.

1. It serves as the remote control station for the mobot.
2. It accepts the incoming data from the mobot.
3. It displays the status of the mobot and helps determine the path taken by it.
4. It displays the temperature of the environment as taken by the robot.

For the remote controlling of the mobot, buttons D0 to D4 and D5 are interfaced with

pins 1 to 5 and pin 7 respectively. The entire scene is orchestrated with the use of the button
command and when a particular button is pressed, a corresponding SEROUT command is
send having a specific message. Based on the message contained in the SEROUT command
the mobot carries out some specified task.

Pin numbers 0 and 6 are used to interface the RF transmitter and the IR receiver
respectively. The buttons interfaced in the base station serve as means for remote control, the
pins interfaced with the RF transmitter to send data and the IR receiver for getting incoming
temperature and positional data.

Pin numbers 15 through 10 are used to interface the LCD circuit and serve to display the
distance and direction of the mobot’s motion.

Figure 5 Basic Circuit Set Up of the Base Station

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 10

Mobot Setup

Figure 6 Boe-Bot Parts

The first major task was to get the Boe-Bot assembled and running properly. A

robot’s subsystems include its motors, sensor arrays, microprocessor, and mechanical
linkages. These have to be assembled into a working system. Next we test and trouble -shoot
the subsystems. Then comes the system integration, the process of making all the Robot’s
subsystems work together. Once the testing and trouble-shooting is finished at the subsystem
level, a robot’s subsystems have to be connected to and controlled by a microprocessor. The
process of getting all the subsystems (including the microprocessor) to work together to make
the robot perform its assigned task list is called system integration. System integration can be
tricky to begin with, but robotics teams who skipped any of the testing and troubleshooting at
the subsystem level often have much larger problems with their system integration. That is
why we spent some time trying to get the robot to work the way it’s supposed to with all the
bugs removed from the subsystem.

The Boe-Bot setup can be separated into the following activities:

1. Boe-Bot Mechanical Assembly
2. Programming the Boe -Bot’s BASIC Stamp 2 On-Board Computer
3. Testing the Servos Individually
4. Running Both Servos
5. Tuning the Servos – Calibration in Software

Each of these activities involves discrete steps to get the Boe-Bot up and running.
First, we had to check to make sure that we had all our parts. We found that a whisker and
two screws for the servos was missing and had to get them replaced by the TA. Next, we put
the mechanical parts together.

After that, we had to test the microprocessor subsystem. Then came the testing of
each servo motor individually. Then, the servo motors had to be made to work in unison.
Last, but certainly not least, calibrate the pre-modified servos. By carefully following the
instructions in the Robotics manual, we ensured that our microprocessor and motor
subsystems were working reliably.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 11

Collision detection

 The Boe-Bot uses infrared LEDs like headlights for object detection. They emit
infrared, and in some cases, the infrared reflects off objects, and bounces back in the direction
of the Boe-Bot. The eyes of the Boe-Bot are the infrared detectors. The inf rared detectors
send signals to the BASIC Stamp indicating whether or not they detect infrared reflected off
an object. The brain of the Boe-Bot, the BASIC Stamp, makes decisions and operates the
servo motors based on this input.

Figure 7 Object Detection

The IR detectors have built-in optical filters that allow very little light except the 980

nm. infrared that we want to detect onto its internal photodiode sensor. The infrared detector
also has an electronic filter that only allows signals around 38.5 kHz to pass through. In other
words, the detector is only looking for infrared flashed on and off at 38,500 times per second.
This prevents interference from common IR interference sources such as sunlight and indoor
lighting. Sunlight is DC interference (0 Hz), and house lighting tends to flash on and off at
either 100 or 120 Hz, depending on the main power source in the country where you reside.
Since 120 Hz is way outside the electronic filter’s 38.5 kHz band pass frequency, it is, for all
practical purposes, completely ignored by the IR detectors.

Figure 8 Infra-Red Circuit

 P15

 P3

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 12

How the IR Pairs Display Program Works

Two bit variables are declared to store the value of each IR detector output. The
command freqout 15, 1, 38500 sends the on-off pattern left IR LED circuit by causing it to
flash on and off rapidly. The harmonic contained in this signal either bounces off an object,
or not. If it bounces off an object and is seen by the IR detector, the IR detector sends a low
signal to IO pin P14. Otherwise, the IR detector sends a high signal to P14. So long as the
next command after the freqout command is the one testing the state of the IR detector’s
output, it can be saved as a variable value in RAM. The statement left_IR_det = in14
checks P14, and saves the value (“1” for high or “0” for low) in the left_IR_det bit variable.
This process is repeated for the other IR pair, and the IR detector’s output is saved in the
right_IR_det variable.

The saved bit values for each IR detector output can be used to control the motion of
the Boe-Bot in the required manner by using the following code:

if left_IR_det = 0 and right_IR_det = 0 then u_turn
if left_IR_det = 0 then right_turn
if right_IR_det = 0 then left_turn

Temperature sensing

This part uses the Dallas Semiconductor DS1620 digital thermometer/thermostat chip.

This chip measures temperature and makes it available to the BASIC Stamp through a
synchronous serial interface. The DS1620 is an intellig ent device and, once programmed, is
capable of stand-alone operation using the T(com), T(hi) and T(lo) outputs. The DS1620
requires initialization before use. In active applications like this, the DS1620 is configured for
free running with a CPU. After the configuration data is sent to the DS1620, a delay of 10
milliseconds is required so that the configuration can be written to the DS1620’s internal
EEPROM. After the delay, the DS1620 is instructed to start continuous conversions. This
will ensure a current temperature reading when the BASIC Stamp requests it. To retrieve the
current temperature, the Read Temperature ($AA) command byte is sent to the DS1620.
Then the latest conversion value is read back. The data returned is nine bits wide. Bit8
indicates the sign of the temperature. If negative (sign bit is 1), the other eight bits hold the
two’s compliment value of the temperature. Whether negative or positive, each bit of the
temperature is equal to 0.5 degrees Celsius.

Figure 9 DS1620 FUNCTIONAL BLOCK DIAGRAM

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 13

Figure 10 DS1620 Circuit

Application note:

There are two modes in which the mobot operates. The remote mode and the autonomous
mode. The initial display is a welcome to the two modes and asks the user to select one from
the list. From there one the following list can be followed to run the mobot application.

• Press button 7 or 8 to select between modes 1 and 2 respectively.
• If mode 1 is selected the robot will run by remote control.
• In mode 1, button 1 controls forward motion, with the robot moving in steps of 5 cms.
• Button 2 gives motion in backward direction with same step size as in the previous

case.
• Button 3 and 4 are for left and right turns respectively. The turns are taken in 30

degree angles.
• Button 5 is for making the robot do a U-turn.
• Button 6 make the robot read the temperature of the surrounds and sends it back to the

base station.
• Alternatively if mode 8 is selected the robot goes into its autonomous mode. Here the

robot moves for 32 discrete motions, records the value in the EEPROM and then on
completion of 32 steps retraces its path back to the base station.

• The system cannot go from mode 2 to mode 1 while mode 2 is running, but vice versa
is possible.

• There is continuous visual feedback as to what the machine is doing at any instant
through LCD.

 P4
 P5

 P6

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 14

Problems Faced:

1. The limitation of array size. We can’t declare an array size greater than 32. So our
robot can move maximum of 32 steps.

2. We were unable to create a proper t emperature Sink or Source. So, our criteria for the

robot to check the temperature and comes back to original position only when it hits
something of high or low value than normal range, was not fulfilled.

3. SERIN and SEROUT commands. The problem is once you give a SEROUT

command from a Micro-Processor then SERIN should be called just after it in another
Micro-Processor. Synchronizing the 2 things is a difficult task. One way to come out
of it is to make SERIN keep on waiting until it receives a signal. But this is not an
efficient method, since this makes that Micro-Processor cannot do any other activity
while this waiting. We aren’t able to send the exact positions and temperatures back
to the station all the times. One time we were getting the value of temperature as 24
degrees and one time 255 degree, for the same code after the robot hits the same
object again.

4. The range of IR-LED depends on its position and orientation. This sensor is too

sensitive, and so gives inaccurate results, depending on its position and the surface
orientation of the object it detects.

5. Initially we noticed our Boe-Bot didn’t go perfectly straight forward when we ran

Program for forward motion. For that matter, it didn’t go perfectly straight backward
in response backward motion loop also.We found that the Boe -Bot veered to the right
when it was programmed to go straight forward, therefore either the left wheel needs
to slow down, or the right wheel needs to speed up. Since the servos are pretty close
to top speed as it is, slowing the left wheel down will work better. This was done by
making the pulse period to the left servo, which is connected to P13, smaller. By
trying different values, we were able to home in on the values that made our Boe-Bot
wheels turn in the direction we wanted.

Given below is the final code for controlling the motion of the Boe-Bot with the
calibrated values.

Forward:
 for pulse_count = 1 to 20
 pulsout 12, 500
 pulsout 13, 920
 pause 20
 next

left_turn:
 for pulse_count = 0 to 9
 pulsout 12, 500
 pulsout 13, 580
 pause 20
 next

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 15

right_turn:
 for pulse_count = 0 to 9
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next

u_turn:
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next

backward:
 for pulse_count = 1 to 10
 pulsout 12, 1000
 pulsout 13, 580
 pause 20
 next

One of the issues during the calibration was that we found that the Boe -Bot had to be
recalibrated every day. We finally pinned this down on the batteries. We found out that the
speed of rotation of the wheels was dependant on the life of the batteries. We got around this
problem by calibrating the Boe-Bot with a new set of batteries and then using them only
during the final demonstration of the project.

New Commands Used

The two new commands used for this project were SERIN and SEROUT. These
PBasic commands are actually complementary in nature. The SERIN command is used
receive data that is sent out by any device, generally a microcontroller, in an asynchronous
manner. The SEROUT command is used to send the data.

An example of the two commands in use is as illustrated below (from our source code).

SERIN 6, 813, [Msg]
SEROUT 0, 16780, ["1"]

The SERIN here is used to receive data sent out by the IR of the mobot. The SERIN
command takes many parameters and can be learn about from the Basic Stamp manual. The
SERIN that has been implemented above takes 3 parameters. The first parameter is the pin to
which the receiving device is connected. In this case the receiving device is an IR
detector/receiver. The second parameter is the baud rate at which data has to be transferred.
The third parameter is the variable using which the incoming data is stored.

The SEROUT command as mentioned before is used to send out serial asynchronous
data out. The SEROUT command shown above is activate or called when a particular button
on the base station is pressed. The SEROUT command also takes in many parameters which
can exploited, in our case the implementation takes just three parameters. The first parameter
is the pin to which the transmitting device is connected to. In this case the output device is a
RF transmitter. The second parameter is the baud rate and the final parameter is the bit of
data transmitted. The bit of data here is used perform some meaningful function. The mobot
upon receipt of that piece of data moves forward.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 16

Figure 11 A schematic of the two basic stamp interfaced with each other through wire based

asynchronous serial communication

Working of the Program

The base station program is relatively simple: it merely checks for the button events
from the user and outputs the user command in an appropriate format to the mobile, and if
there are no user commands, it looks for data from the mobile and outputs the relevant
information on the LCD screen.The mobile program is a bit more sophisticated; first it tries to
get the input from the base station. If there is any input, the first check it makes it is whether
the input is button D6 or D7. In case it is D6, the mobile unit is switched to mode 1
(autonomous mode). If it is D7, it is switched to mode 2 (button mode).

In autonomous mode, the program checks for the current array index. If it is less than
32, the mobile unit moves forward, stores the movement it made in the array provided for the
purpose and increments the array index by 1. Then, it checks if the sensors have detected a
collision and takes the appropriate decision – if the sensors have detected a collision on both
sides, a u-turn is made, or if a collision is detected on the left side, a right turn is made, or if a
collision is detected on the right side, a left turn is made. Again, all the movements are
recorded in the array.

If the array index is greater than or equal to 32, the mobile unit attempts to retrace its
path. For this, the first step is a U-Turn, followed by traversing the array, taking the next
move from it in the reverse order in which they were pushed into the array. This process
continues until the array is empty, i.e., the arra y index is zero.

In the button mode the first step is to get the input from the base station using SERIN.
Then, depending on the incoming command, various actions are performed. If the command
corresponds to button D0 being pressed on the base station, impulses are given to the servos
(which drive the wheels) so that the unit moves forward by a pre-defined distance. If the
command is button D1, the unit moves back. Similarly, commands D2, D3, and D4
correspond to a left turn, a right turn and a U-turn. Button D5 is a request for the temperature
to be taken. On receiving this command, the mobile unit takes the temperature and sends it
back to the base unit using the SEROUT command. The D6 command causes the mobile unit
to switch modes and enter the autonomous mode.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 17

Final Result/Conclusions

1. We used all the 8 buttons provided in bread-board. D0, D1, D2, D3, are used for
giving increments to the robot in forward, backward, right and left direction
respectively. D4 is used for U-turn. D5 is used to take temperature of the object near
to robot in current position. D6 and D7 are used for switching the modes as 1st mode
or 2nd mode.

2. In the 1st mode we can control the robot using buttons to move in discrete steps of

angles i.e. 30 degrees or distances i.e. 5cm.

3. In this mode, if the robot hits an object, it moves back to 2.5cm and sends the message
to the base station, saying there is a collision.

4. After reaching a particular position and orientation, we can actuate the autonomous

mode.

5. The robot moves by itself for 32 steps avoiding collisions, sensing all the
temperatures of different objects, but unable to send the exact values sometimes to the
base station.

6. After reaching to 32 steps, it sends the last temperature and returns to original position

using the same path, as this is stored in an array with acceptable accuracy i.e. a range
of 0-6cm difference in the actual location and the location it reaches afterwards.

7. Now the user can again change the orientation or position or both and starts mapping

the temperature of new area.

8. The movement of robot in autonomous mode is depending on its collision on
IRLED_LEFT or IRLED_RIGHT. If IRLED_LEFT detects a collision, the robot
takes 30 Degrees RIGHT, and for IRLED_RIGHT it takes 30 Degrees LEFT. If both
the IRLED detects collision simultaneously, then the robot takes a U-TURN.

9. In the autonomous mode the mobot finds the path out in a given direction and will

travel in that general direction for 32 steps. Then it would stop and return back to
base. There is however no collision detection on the way back.

10. There is continuous visual feedback of the mobot’s movements through the LCD.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 18

Contribution of Team members to Project

Person #

Name Contribution

30314938 Rajendra Agarwal Programming the base station,
setting up the IR and RF
communication, enabling the
robot for autonomous mode,
interfacing the robot with
buttons for remote mode and
documentation.

30412424 Regeesh Britto Setting up of the robot
calibration of the robot, setting
up of the temperature sensor,.
Collision detection,
documentation

30510714 Gopikrishnan Sidhardhan Calibration of the robot,
setting up of the temperature
sensor, Collision detection and
documentation

 William Mitchell

Calibration of robot, collision
detection and documentation.

30465741 Govindarajan Srimath
Veeravalli

Programming the base station,
setting up the IR and RF
communication, enabling the
robot for autonomous mode,
interfacing the robot with
buttons for remote mode and
documentation.

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 19

Get SERIN

Start

Is the
value

obtained
55?

Is the
value
56?

Mode 1

Is the
array

index <
32?

Move
forward.

Yes

Yes

No

Store
movement type

in array.

Array Index =
Array Index + 1.

Collision?

No.

Do U-
Turn.

Array Index =
Array Index – 1.

Get the next
move from

array.

Move Robot.

Is the
array

index >
0?

No.

Yes.

Take
Temperature
and send to
base using
SEROUT.

Yes

Collision
on both
sides?

Do U-
Turn.

Store
moveme

nt in
array
and

incremen
t index.

No.

Yes.

Collis
ion on
left?

Move right.

Move left.

No.

Yes

Mode 2
Yes

Flow Charts

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 20

Mode 2

Is the
button
pressed

D0?

Is the
button
pressed

D1?

Move
forward.

Check
for

collision.

No collision.

Go back
and send

message to
base station
(SEROUT)

. Move
Backward.

Yes

Collision.

Is the
button
pressed

D2?

Move Left.

No.

Yes

Is the
button
pressed

D3?

Move
Right.

Is the
button
pressed

D4?

No.

No.

Yes

U-Turn

Yes

Is the
button
pressed

D5?

Send
temperat

ure to
base.

Yes

Is the
button
pressed

D6?

Switch to
mode 1.

No.

Yes

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 21

Source Code

This is the source code for the base station controlling the mobot.

'{$STAMP BS2} 'STAMP directive (a BS2)

sw1 var byte 'variables for the various switches
sw2 var byte
sw3 var byte
sw4 var byte
sw5 var byte
sw6 var byte
sw7 var byte
sw8 var byte

' THIS VARIABLEIS USED IN THE SERIN
‘___’

Msg var word 'variable used to store data received from serin
temp VAR Word 'used to store temperature value
dist Var byte
F var byte 'labels for moving in different directions, F = front
B var byte
R var byte
L var byte
ans VAR Byte 'bunch of flags , acts as flow control between the serins
FLAG1 VAR BYTE
I var byte 'loop variable , used for the for statement
width VAR nib ' for passing data into the LCd
'_____________________________LCD vars_____________________________________

E CON 11 ' LCD Enable pin (1 = enabled)
RS CON 10 ' Register Select (1 = char)

LCDddir VAR DirD ‘ port direction
LCDout VAR OutD ' 4-bit LCD data out
LCDin VAR InD ' 4-bit LCD data in

ClrLCD CON $01 ' clear the LCD
DDRam CON $80 ' Display Data RAM control

char VAR Byte ' character sent to LCD
index VAR Byte ' loop counter

Flag VAR Byte

'__

' the variables used for the various subroutines and functions are
initalized, the LCD is warmed up here’

Initialize:
 temp = 0
 dist = 0
 F=0
 L=0
 B=0
 R=0
 ans = 0
 DirH = %11111100 ' setup pins for LCD

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 22

 GOSUB LCDinit ' initialize LCD for 4-bit mode
 char = ClrLCD ' clear the LCD
 GOSUB LCDcommand
 FOR index = 0 TO 6 ' create display in default mode
 LOOKUP index,["Welcome"],char
 GOSUB LCDwrite
 NEXT
 '__

Main:

 BUTTON 1, 0, 1, 1, sw1, 1, butt1 ' 5 buttons to move fwd, bck,rt
and lft and uturn '

 BUTTON 2, 0, 1, 1, sw2, 1, butt2 ' when each button is pressed a
function is called that sets a flag'

 BUTTON 3, 0, 1, 1, sw3, 1, butt3
 BUTTON 4, 0, 1, 1, sw4, 1, butt4
 BUTTON 5, 0, 1, 1, sw5, 1, butt5
 BUTTON 7, 0, 1, 1, sw6, 1, butt6
 BUTTON 8, 0, 1, 1, sw7, 1, butt7
 BUTTON 9, 0, 1, 1, sw8, 1, butt8

 If(Flag1=7) THEN mode1
 If(Flag1=8) THEN mode2
 If(Flag=1) and (flag1 = 0) THEN Fwd 'here depeding on the flag sends
a serout

 If(Flag=2) and (flag1 = 0) THEN Bwd 'to the mobot to do something '
 If(Flag=3) and (flag1 = 0) THEN Left
 If(Flag=4) and (flag1 = 0) THEN Right
 If(Flag=5) and (flag1 = 0) THEN uturn

If(ans = 1) THEN Call_Serin 'serin coming in for the IR from the mobot '

If Msg = "4" THEN coll ' MSg = 4 indicates collision

Goto main

‘___’

' this function is activated when msg = 4, used for the IR signal '

coll:
 F=0
 B=0
 L=0
 R=0

 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 width = 15
 FOR index = 0 TO width ' create display in default mode
 LOOKUP index,["Collision "],char
 GOSUB LCDwrite
 NEXT
Goto Main

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 23

' it is the default handshake message between the mobot and the base at the
end of any action ‘

Call_Serin:
 ans = 0 ' ans is the flag that controls the function , function
is polled and called only when any
 Serin 6, 813, [Msg] ' buton is pressed
 debug msg
Goto main

' below are the various function for the robot based on the button pressed
from butt1 to butt8
' has serouts and sets the flag up for the serin (IR) '

butt1:
 SEROUT 0, 16780, ["1"] ' Send the greeting.
 Flag=1
 ans = 1
Goto Main

butt2:
 SEROUT 0, 16780, ["2"] ' Send the greeting.
 Flag=2
 ans = 1
Goto Main

butt3:
 SEROUT 0, 16780, ["3"] ' Send the greeting.
 Flag=3
 ans = 1
Goto Main

butt4:
 SEROUT 0, 16780, ["4"] ' Send the greeting.
 Flag=4
 ans = 1
Goto Main

butt5:
 SEROUT 0, 16780, ["5"] ' Send the greeting.
 Flag=5
 ans = 1
Goto Main

butt6:
 SEROUT 0, 16780, ["6"] ' Send request to measure temperature.
 'Flag=6
 'ans = 1
 serin 6, 813, [Msg]
 goto disp_temp

butt7:
 SEROUT 0, 16780, ["7"] ' Send request to measure temperature.
 Flag1 = 7
goto main

butt8:
 SEROUT 0, 16780, ["8"] ' Send request to measure temperature.
 Flag1 = 8
goto main

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 24

' from here omn all messages are displayed depending on button pressed,
message is fwd, bk etc.. with units moved '

Fwd:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 F=F+4
 B=0
 L=0
 R=0
 temp = F
 width = 4
 FOR index = (width - 1) TO 0 ' display digits left to right
 char = (temp DIG index) + 48 ' convert digit to ASCII
 GOSUB LCDwrite ' put digit in display
 NEXT

 FOR index = (width-1) TO (width +10)
 LOOKUP index,[" cm Forward "],char
 GOSUB LCDwrite
 NEXT
 Flag = 0
Goto Main

Bwd:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 F=0
 B=B + 4
 L=0
 R=0
 temp = B
 width = 4
 FOR index = (width - 1) TO 0 ' display digits left to right
 char = (temp DIG index) + 48 ' convert digit to ASCII
 GOSUB LCDwrite ' put digit in display
 NEXT

 FOR index = (width-1) TO (width +10)
 LOOKUP index,[" cm Backward"],char
 GOSUB LCDwrite
 NEXT
 Flag = 0
Goto main

Left:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 F=0
 B=0
 L=L+30
 R=0
 temp = L
 width = 4
 FOR index = (width - 1) TO 0 ' display digits left to right
 char = (temp DIG index) + 48 ' convert digit to ASCII
 GOSUB LCDwrite ' put digit in display
 NEXT

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 25

 FOR index = (width-1) TO (width +10)
 LOOKUP index,[" Deg Left "],char
 GOSUB LCDwrite
 NEXT
 Flag = 0

Goto Main

Right:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 F=0
 B=0
 L=0
 R=R+30
 temp = R
 width = 4
 FOR index = (width - 1) TO 0 ' display digits left to right
 char = (temp DIG index) + 48 ' convert digit to ASCII
 GOSUB LCDwrite ' put digit in display
 NEXT
 FOR index = (width-1) TO (width +10)
 LOOKUP index,[" Deg Right "],char
 GOSUB LCDwrite
 NEXT
 Flag = 0
Goto Main

Mode1:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 FOR index = 0 TO 15 ' create display in default mode
 LOOKUP index,[" Mode1 "],char
 GOSUB LCDwrite
 NEXT
 Flag1 = 0
 serin 6, 813, [Msg]
 goto disp_temp

Goto Main

' the display message for the toggle between the two modes
Mode2:
 char = DDRam ' show address at position 5
 GOSUB LCDcommand
 FOR index = 0 TO 15 ' create display in default mode
 LOOKUP index,[" Mode2 "],char
 GOSUB LCDwrite
 NEXT
 Flag1 = 0
Goto Main

uturn:
 char = ClrLCD ' clear the LCD
 GOSUB LCDcommand
 FOR index = 0 TO 5 ' create display in default mode
 LOOKUP index,["U-TURN"],char
 GOSUB LCDwrite
 NEXT
 temp=0

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 26

 Flag = 0
Goto Main

' for displaying the temperature sent in from the mobot
disp_temp:
 char = ClrLCD
 GOSUB LCDcommand
 width = 4
 FOR index = (width - 1) TO 0 ' display digits left to
right
 char = (Msg DIG index) + 48 ' convert digit to ASCII
 GOSUB LCDwrite ' put digit in display
 NEXT
 FOR index = (width-1) TO (width +10) ' create display in
default mode
 LOOKUP index,[" Deg Celsius "],char
 GOSUB LCDwrite
 NEXT

Goto Main

' end of all messages , LCD function here on '

'_________________INITIALISING DISPLAY__________________________________’

LCDinit:
 PAUSE 500 ' let the LCD settle
 LCDout= %0011 ' 8-bit mode
 PULSOUT E,1
 PAUSE 5
 PULSOUT E,1
 PULSOUT E,1
 LCDout = %0010 ' 4-bit mode
 PULSOUT E,1
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCDcommand
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCDcommand
 RETURN
'________________
’LCDcommand:
 LOW RS ' enter command mode
LCDwrite:
 LCDout = char.HighNib ' output high nibble
 PULSOUT E,1 ' strobe the Enable line
 LCDout = char.LowNib ' output low nibble
 PULSOUT E,1
 HIGH RS ' return to character mode
 RETURN
‘__’

'{$STAMP BS2} 'STAMP directive (a BS2)
'-------------------------------Variable declaration-----------------------
---------------'
Get var byte 'Value gets in SERIN from Base-Station
pulse_count var byte 'used in FOR-NEXT loop
MoveType var nib(32) 'Array created for
 'keeping track of the
 'movements of robot and
 'back-traversing of robot
 ' in the same path

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 27

flag var byte 'Checks whether the Robot should
 'move in increment or decrement
 'of index
index var byte 'keeps track of the position in an
 'array
'-----------------------Variables for temperature sensor------------------
----------'
DQ CON 4 ' DS1620.1 (data I/O)
Clock CON 5 ' DS1620.2
Reset CON 6 ' DS1620.3

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

tempIn VAR Word ' raw temperature
sign V AR tempIn.Bit8 ' 1 = negative temperature
tSign VAR Bit
tempC VAR byte ' Celsius
'------------------------------Variables for IR --------------------------
------------------'
left_IR_det var bit ' Two bit variables for saving IR
right_IR_det var bit ' detector output values.3

'--- Initialization -----------------
----------------------'
index=1
flag=0
output 15 ' signals to function as outputs for IR 1
output 3 ' signals to function as outputs for IR 2
low 12 ' pin used for Servo left wheel
low 13 ' pin used for Servo right wheel
'------------------------Initial code for Temperature sensor---------------
----------'
HIGH Reset ' alert the DS1620
SHIFTOUT DQ, Clock, LSBFirst, [WrCfg, %10] ' use with CPU, free-run
LOW Reset
PAUSE 10
HIGH Reset
SHIFTOUT DQ, Clock, LSBFirst, [StartC] ' start conversions
LOW Reset
'---------------------------------Initialization Ends------------------'

'----------------------Main program starts-------------------------'
main:

Serin 0,16780,[get]
debug ? get
if (get=55) THEN main1
if (get=56) THEN main2
goto main
'----------------------------------Main Ends------------------------------'
'------------CODE :REMOTE CONTROL MODE2 STARTS-------------------'
main2:

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 28

if (get=49) THEN forwardNew 'Robot moves forward
if (get=50) THEN backwardNew 'Robot moves forward
if (get=51) THEN left_turnNew 'Robot moves forward
if (get=52) THEN right_turnNew 'Robot moves forward
if (get=53) THEN u_turnNew 'Robot moves forward
if (get=54) THEN Get_Temperature2 'Sensor DS1620 records
 'temperature
if (get=55) THEN main1 'changes the mode to mode1

' this is the primary comm lop, when any button is presed and the action
'executed, the signal is sent out in a loop so that IR serin of the base
receives it '

FOR pulse_count = 0 TO 50
 SEROUT 1,17197,["2"] ' Send the greeting.
NEXT

' this for the RF comm
SERIN 0,16780,[get] ' based on incoming signal flag is set

'based on flag, mobot moves '
debug ? get
goto main2

'-----------------------REMOTE CONTROL MODE ENDS----------------'

'-----------------CODE: AUTONOMOUS MODE1 STARTS---------------'
main1:
if(flag=1) THEN GoBack
Gosub Forward
goto main1

Goback:
 index = index - 1
 if(index=0) THEN come
 if MoveType(index) = 1 then forward2
 if MoveType(index) = 5 then backward2
 if MoveType(index) = 2 then right_turn2
 if MoveType(index) = 3 then left_turn2
 'NOTE: left turn and right turn values are interchanged
 'Since the robot should behave diffrently while coming
 if MoveType(index) = 4 then u_turn2
GOTO Main1

come:
 flag=0
 PAUSE 5000
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
goto Main

go:
 flag=1
 PAUSE 2000
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 29

 GOSUB Get_Temperature1
goto Main1

Forward: ' If no detect, one forward
pulse.
 debug ? MoveType(index), ? index
 if (index=32) THEN go
 freqout 15, 1, 38500 ' Send freqout signal - left
IRLED.
 left_IR_det = in14 ' Store IR detector output in
RAM.
 freqout 3, 1, 38500 ' Repeat for the right IR pair.
 right_IR_det = in2
 if left_IR_det = 0 then right_turn 'takes LEFT on RIGHT-IR-DET
 if right_IR_det = 0 then Left_turn 'takes RIGHT on LEFT-IR-DET
 for pulse_count = 1 to 20
 pulsout 12, 500
 pulsout 13, 920
 pause 20
 next
 get = 0 ' flag for communication
 MoveType(index) = 1
 index = index + 1
goto Main1

left_turn: ' Left turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 500
 pulsout 13, 580
 pause 20
 next
 get = 0
 MoveType(index) = 2
 index = index + 1
goto Main1

right_turn: ' Right turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
 get = 0
 MoveType(index) = 3
 index = index + 1
goto Main1

u_turn: ' U-turn routine.
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
 get = 0
 MoveType(index) = 4
 index = index + 1
goto Main1

backward: ' Used by each navigation routine

 for pulse_count = 1 to 10

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 30

 pulsout 12, 1000
 pulsout 13, 580
 pause 20
 next
 get = 0
 MoveType(index) = 5
index = index + 1
goto Main1

' ** '
forward2: ' If no detect, one forward pulse.

 for pulse_count = 1 to 20
 pulsout 12, 500
 pulsout 13, 920
 pause 20
 next
goto Main1
 ' Check again.
left_turn2: ' Left turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 500
 pulsout 13, 580
 pause 20
 next
goto Main1

right_turn2: ' Right turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
goto Main1

u_turn2: ' U-turn routine.
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
goto Main1

backward2: ' Used by each navigation routine .
 for pulse_count = 1 to 20
 pulsout 12, 1000
 pulsout 13, 580
 pause 20
 next
goto Main1

'------- Function to drive the DS 1620 temperature sensor-----------------'

Get_Temperature1:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620
 tSign = sign ' save sign bit
 tempIn = tempIn / 2 ' round to whole degrees
 IF (tSign = 0) THEN No_Neg1

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 31

 tempIn = tempIn | $FF00 ' extend sign bits for
negative
No_Neg1:
 tempC = tempIn ' save Celsius value
 tempIn = tempIn */ $01CC ' multiply by 1.8
 IF (tSign = 0) THEN No_Neg2 ' if negative, extend sign
 tempIn = tempIn | $FF00
No_Neg2:
 tempIn = tempIn + 32 ' finish C -> F conversion
 'tempF = tempIn ' save Fahrenheit value
 FOR pulse_count = 0 TO 50
 SEROUT 1,17197,[tempC] ' Send the temperature.
 NEXT
 Debug "TempC = ", dec tempC, cr
 get = 0
Goto Main1

'-----------------------------functions used in MAIN 2/ MODE 2-------------
---------------------------'

' when collison occurs this spl flag is set and a different message is
passed to the IR
'on the base from here on the functions to the servo for movement '

forwardNew: ' If no detect, one forward
pulse.
 for pulse_count = 1 to 20
 freqout 15, 1, 38500 ' Send freqout signal - left
IRLED.
 left_IR_det = in14 ' Store IR detector output in
RAM.
 freqout 3, 1, 38500 ' Repeat for the right IR pair.
 right_IR_det = in2

 if left_IR_det = 0 then collision
 if right_IR_det = 0 then collision
 pulsout 12, 500
 pulsout 13, 920
 pause 20
 next
 get = 0 ' flag for comm
goto main2 ' Check again.

left_turnNew: ' Left turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 500
 pulsout 13, 580
 pause 20
 next
get = 0
goto main2

right_turnNew: ' Right turn routine.
 for pulse_count = 0 to 9
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
get = 0

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 32

goto main2

u_turnNew: ' U-turn routine.
 for pulse_count = 0 to 54
 pulsout 12, 1000
 pulsout 13, 920
 pause 20
 next
get = 0
goto main2

backwardNew: ' Used by each navigation routine
.
 for pulse_count = 1 to 20
 pulsout 12, 1000
 pulsout 13, 580
 pause 20
 next

get = 0
goto main2

' this backward is called when a collision is detected, usually for moving
back the previous function '

backwardNew1: ' Used by each navigation routine
.
 for pulse_count = 1 to 10
 pulsout 12, 1000
 pulsout 13, 605
 pause 20
 next
get = 0
GOTO Main2

collision:
 FOR Pulse_count = 0 TO 50
 SEROUT 1,17197,["4"] ' Send the greeting.
 NEXT
 Gosub BackwardNew1
Goto Main2
'Return

' Function to drive the DS 1620 temperature sensor.

Get_Temperature2:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620
 tSign = sign ' save sign bit
 tempIn = tempIn / 2 ' round to whole degrees
 IF (tSign = 0) THEN No_Neg11
 tempIn = tempIn | $FF00 ' extend sign bits for
negative
No_Neg11:
 tempC = tempIn ' save Celsius value
 tempIn = tempIn */ $01CC ' multiply by 1.8
 IF (tSign = 0) THEN No_Neg21 ' if negative, extend sign
bits
 tempIn = tempIn | $FF00

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 33

No_Neg21:
 tempIn = tempIn + 32 ' finish C -> F conversion
 'tempF = tempIn ' save Fahrenheit value
 FOR pulse_count = 0 TO 50
 SEROUT 1,17197,[tempC] ' Send the temperature.
 NEXT
 Debug "TempC = ", dec tempC, cr
 get = 0
Goto Main2

‘ ------------------------------------- End of all Programs ---‘

Circuit Diagrams

Base Station Circuit

Vss

Vdd

+5V

Vdd
+5V
+5V

Vdd

+5V

7
6
5
4

RS
RW

LCD
VssVss

ANTENNA

6
5
4 1

2
3

TLP434

Vss

10K 10K 10K 10K10K10K

5V

O1
O2 O3

IR Reciever

D5 D4 D0D1D2D3

1
2
3
4
5
6
7 8

9
10
11
12
13
14
15

BS2

4.7K

Mobot Circuit

MAE 576
Mechatronics Temperature Sensing Robot

Group A Page number 34

+V

V2
Vdd

Q2
IR detector

Q1
IR detector

D2
IR LED

D1
IR LED

+V

V1
Vdd

O1
O2 O3

FS-II

23 14
5 6 7 8

DS1620

2
3

1

4 5
6
7
8

RLP 434

1
2
3
4
5
6
78

9
10
11
12
13
14
15

BS2

ANT1

R4
220

R3
220

R2
1k

R1
4k

