State University of New York at Buffalo

Department of Mechanical and Aerospace Engineering

MAE 476 / 576: Mechatronics Spring Semester - 2003

Mini Assignment 2 (Part 1)

Theme: Analysis of Different Mechatronic Courses Available

Instructor: Dr. Venkat Krovi Teaching Assistant: Chin-Pei Tang

Web	Pages	of	prominent	Mech	natronics	Courses
-----	-------	----	-----------	------	-----------	---------

UNIVERSITY AND COURSE TITLE	WEB ADDRESS		
NCSU, Mechatronics	http://courses.ncsu.edu:8020/mae534/lec/001/		
UC Berkley,			
Mechatronics	http://www-inst.eecs.berkeley.edu/~ee192/		
Design Lab			
Georgia			
Tech,	http://www.ma.astach.adu/ma/asadamias/anaduata/aam_aanu/ME6405.htm		
Introduction	<u>http://www.me.gatecn.edu/me/academics/graduate/sem_conv/ME6405.ntm</u>		
10 Mechatronics			
Pennstate			
University.			
<i>Mechatronics</i>	http://www.me.psu.edu/lamancusa/mechatronics/advmech.htm		
Research Lab			
UIUC,			
Introduction	h_{t}		
to	<u>nup://roboi0.ge.utuc.edu/~spong/deere/ge393.ntm</u>		
Mechatronics.			
Carnegie			
Melon			
University,	http://www.me.cmu.edu/academics/courses/24778.htm		
Mechatronic			
Design			
Stanford			
University,	http://design_stanford_adu/Courses/ma118/html/course_html		
Smart Product	<u>http://design.stanford.edu/Courses/me118/html/course.html</u>		
Design			
North			
Western			
University.	http://www.mech.nwu.edu/courses/433/CourseDocs/433_Ad_2002-08-		
Advanced	<u>29.pdf</u>		
Mechatronics			
Virginia			
Tech,	http://mechatronics.me.vt.edu/home.html		
Mechatronics			
John			
Hopkins	http://custer.me.ihu.edu/mechatronics/syllabus2002 htm		
University,	y,		
Mechatronics			

UNIVERSITY	THEORETICAL EMPHASIS/	PRACTICAL	MICROPROCESSOR
	COURSE STRUCTURE	EMPHASIS/PROJECT	USED /
NOOL		WORK	HARDWARE USED.
NCSU	systems, analog circuits and electronic components, logic gates.	working working with microprocessors, and interfacing sensors and actuators.	_
	Introduction to microprocessor architecture, sensors and actuators.	Laboratory kit will be available.	
	A/D and D/A conversion and data acquisition, sensor interfacing and signal conditioning, real-time programming concepts, intelligent control fundamentals.	Teams will work on a final design project that is of reasonable complexity.	
	Direct digital control implementation, principles of mechatronic design synthesis, and components analysis.		
GEORGIA TECH	Choice of embedded computers; choice of level of languages: assembly, high level, object oriented for real-time programming (such as C), Simulink.	Modeling and control of electro-mechanical systems. Hardware overview, programming, interrupts, on-chin subsystems	16-Bit microprocessor:
	Analog and digital devices: Op- amp, ADC, DAC, and power transistors	Lab and Project 50% Weight age.	
	Sensors, actuators, and their applications to intelligent manufacturing and mechatronic systems		
	Modeling of various actuators: (DC motors, stepper motors, induction motors), and sensors.		
PENN STATE University	To develop a thorough understanding of mechatronic system design (including cost analysis).	Digital I/O with Basic Stamp II. Digital I/O with PIC Analog Input High Power	Basic Stamp II
	To gain proficiency in embedding micro-controllers into products.	Digital Output and Motion Control with DC servo motors.	
	To design and build a working prototype of an intelligent product.	System simulation.	

UC BERKLEY	Power electronics, filtering and signal processing, control, electro mechanics. Microcontrollers and real-time embedded software in designing a racing robot.	The class project is to design racing robots which can follow an embedded wire over a curving and self-crossing path at speeds greater than 3 meters per second. The course project requires students to consider real-world constraints such as limited volume, payload, electrical power, processing power and time.	CPU/FPGA board (already built).
CARNEGIE MELON UNIVERSITY	Operational system design issues associated with the spectrum of mechanical, electrical, and microcontroller components.Other topics mechatronic methodologies, modeling, components, sensor and I/O interfacing, motor control, and microcontroller basics.	It will center on laboratory projects in which small teams of students will configure, design, and implement mechatronic systems.	
STANFORD	Introduction to electro- mechanical design and embedded systems. Use of microprocessors as components of machines, as opposed to computer control of machines.	First project employs a microprocessor. The second utilizes multiple communicating microprocessors.	Motorola MC68HC11
NORTH WESTERN UNIVERSITY	Electronics: digital & analog refresher (chips and discrete devices) Construction techniques: protoboard, solder board, wire wrap, printed circuit layout. Motor types, controllers; Motor selection: inertia matching and other criteria.	Instrumentation amps / op-amps / filters / analog computation. Real time programming (C under the QNX real- time OS). Sensor interfacing (amplifiers, signal processing, ADCs).	Handyboards/basic stamp.

	Sensor types sensor selection	Encoders and motors	
	and sensor interfacing.	Encoucies and motors.	
	Digital signal processors (DSP), singleboard x86 CPUs, programmable gate arrays, discrete digital chips, analog computation.	Design a digital circuit (referring to datasheets), prototype, printed circuit layout.	
	operating systems, QNX, threads, timing issues, interrupts, Interprocess communication.		
	Communication protocols: analog, serial RS232 and similar, DeviceNET, USB, Ethernet TCP & UDP		
VIRGINIA TECH	VT 84, Analog and digital fundamentals	PIC assembly programming.	PIC Processor.
	Microcontroller technologies and computer architectures. Signal i/o, PIC A/D Converter	Sensors (Infrared, Ultrasonic, Acc's).	
	Sensors (Tachometers, pots, encoders)	Control theory, PID review.	
	Dynamic Modeling, Review. Controller Design. Overview of actuators. PLCs.	PM DC motors, stepper motors. Active material actuators. AC motors, gear reducers.	
		PLCs.	
UIUC	Real-time computing and	Some projects included	_
	software interfacing for manufacturing systems	Electronic Cam Profile	
	manufacturing systems.	Generator using Linear	
	Interfacing of sensors and	Actuator & LVDT.	
	systems.	Automated Light	
	Computer interfacing and real-	Tracking System.	
	time monitoring of machine tools and robots;	Simulation of Smart Traffic Lights	
	Intercomputer communication through network for a manufacturing cell; and human- machine-computer interfaces.		
JOHN HOPKINS UNIVERSITY.	The course is a hands-on, interdisciplinary design project.	The project this year was to make a self replicating robot.	-
	Design, build, and debug mobile robots.		

MiniHW2_Bhabhrawala

Mechatronics MAE 576 Mini Assignment II

1. San Jose State University, One Washington Square • San José, California
 Mechatronics Course Content: Introduction to Mechatronics, sensors, actuators, Op-Amps, microprocessors, Comparators Signal conditioning, A/D, D/A converters, digital electronics. http://www.engr.sjsu.edu/bjfurman/courses/ME106/ME106pdf/me106syllabus.pdf
 Mechatronics System Design Course Content: Process Modeling from testing samples, Computer-aided dynamic system control analysis and design. Application and integration of micro-controller for digital process and servo control. Development of smart and intelligent products with micro-controller. http://info.sjsu.edu/web-dbgen/catalog/courses/ME190.html
 Mechatronic Systems Engineering Course Content: Introduction of mechatronic systems. Combine hardware, software and system Integration. Subjects include basic circuits, logic gates, OpAmps, encoder/decoder, DC and stepper motor, A/D and D/A, C-language, interfacing and control. <u>http://info.sjsu.edu/web-dbgen/catalog/courses/ME285.html</u>
All the above courses will be using Basic Stamp II for their Lab exercises.
To summarize all the above courses cover topics of Analog Electronics, Digital Electronics, Motors, Micro controllers.
2. University of Utah, Salt Lake City, Utah
 Mechatronics I Modeling, Actuators and Data Collection Course Content: Dynamic systems modeling, instrumentation, actuators and computer-based data collection. Mechatronics II Mechanical Components and Control Systems Course Content: Application and Modeling of Actuators, Sensors and Micro controllers to Feed back Control Systems.
http://www.mech.utah.edu/UNDERGRAD/handbook/coursedes.html http://www.mech.utah.edu/~santosh/mechatronics.html

3. Johns Hopkins University, Baltimore, MD

• Mechatronics Course Content: Microcontrollers, Motor Control, Sensors, Power Systems

http://custer.me.jhu.edu/mechatronics/syllabus.htm http://custer.me.jhu.edu/mechatronics/syllabus2000.htm

4. Virginia Tech- Virginia Polytechnic Institute and State University

• Mechatronics

Course Content: Analog and digital fundamentals, Microcontroller technologies and computer Architectures, PIC processor, Signal Conditioning, Sensors, Motors, PLCs, Dynamic Modeling. Lab work includes VT84 board construction, A/D and D/A conversions.

http://mechatronics.me.vt.edu/syllabus.html

5. Michigan State University, East Lansing, MI

• Mechatronic System Modeling and Simulation

Course Content: Introduction to Mechatronics, System equations and behavior Modeling and simulation of mechatronic systems, including mechanical, electrical, fluid, power, and other effects. Transducer modeling, including pumps.

• Mechatronic System Design

Course Content: Application of imbedded microcontrollers to the design of mechatronic systems. Design of software and hardware for systems with mechanical, electrical and fluid components plus imbedded control systems.

http://ntweb1.ais.msu.edu/j4100/scripts/CatalogRequest.asp?SubjectCode=ME&CourseNumber= http://www.egr.msu.edu/classes/me491-602/clo.html

6. Colorado State University, Fort Collins, CO

• Mechatronics and measurement systems Course Content: Electric Circuit Fundamentals, Diodes, Transistors, Op-Amps, Digital electronics, microcontrollers and the PIC, Sensors.

http://www.engr.colostate.edu/~dga/me307/syllabus.html

7. Carnegie Mellon University, Pittsburg, PA

• Mechatronic Design

Course Content: Introduction,68HC16 microcontroller, Motors; encoders, drivers, Sensors, Signal conditioning

The Lab work includes: Microcontroller Battery Meter, MATLAB Simulation of Mechanical Controller, Motor Speed Controller, Ultrasonic Tracker, IR Communication/Tracker, Stair Climbing Demonstration

http://www.ece.cmu.edu/~fedder/mechatronics/description

8. Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA

• Mechatronics

Course Content: Design of mechatronic systems, aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control. Lab work includes Servo Motor Control, Sampling/Aliasing; Signal Processing, Digital Logic Quadrature Encoders, Analog Power Amplifier Design, Brushless Motor Commutation and Control .dSPACE digital signal processors are used. http://web.mit.edu/2.737/www/

9. San Diego State University, 5500 Campanile Drive, San Diego, CA

• Mechatronics:

Course Contents: Electronics Sensors, programmable logic controllers, PIC devices. They have been working on a couple of projects. These are PLC Experiments, Conveyor Experiments,

http://kahuna.sdsu.edu/~mechtron/mechatronics/

10. University of Illinois at Urbana-Champaign, Urbana, IL

• Introduction to Mechatronics

Course Content: Interfacing of sensors and actuators used in manufacturing systems; computer interfacing and real-time monitoring of machine tools and robots; intercomputer communication through network for a manufacturing cell; and human-machine-computer interfaces.

http://robot0.ge.uiuc.edu/~spong/deere/ge393.html http://robot0.ge.uiuc.edu/~spong/deere/projects.html

All the above courses in general will give a good knowledge about sensors, actuators, controllers, motors, PLCs, microprocessor, their interfacing with different devices, their applications and help develop simple and complex embedded systems .

The numbers against the courses do not signify any thing. There are just serial numbers.

Submitted By: Rajani Boddu #3046-7360 January 23, 2003

MiniHW2_Britto

Mini Assignment #2

University	Microcontroller	Theory	Labs
Pennsylvania State University	Parallax BASIC Stamp II	RLC circuits, diodes, transistors, op amps, active filters, electric motors, sensors, D/A and A/D Conversion, Digital Electronics, PC Board Fabrication, Digital Signal Processing	analyze and design digital TTL circuits, build and trouble-shoot analog and digital circuits connected to single chip microcontrollers using prototype wiring and printed circuit board layout, interface common transducers and actuators to microcontrollers, filter, digitize and analyze electronic signals using analog anti-aliasing filters, A/D converters, FFT and digital filters
Georgia Tech University	Motorola MC68HC11	16-Bit microprocessor: introduction, hardware overview, programming, interrupts, on-chip subsystems, parallel I/O. Choice of embedded computers; choice of level of languages: assembly, high level, object oriented for real-time programming (such as C), Simulink. Analog and digital devices: Op-amp, ADC, DAC, and power transistors. Sensors, actuators, and their applications to intelligent manufacturing and mechatronic systems. Modeling and control of electro-mechanical systems. Modeling of various actuators: (DC motors, stepper motors, induction motors), and sensors (position, velocity, force, tactile, and ultrasonic).	Reverse engineering (design for tomorrow based on today?s and yesterday?s designs). Interfacing host computer with MC68HC11 and sequencing light emitting diodes. Strain gauge data acquisition using A/D conversion. DC motor control using interrupts and pulse width modulation (real- time control).
University of Michigan	Parallax BASIC Stamp	Electronics, Sensors, Actuators, System Dynamics, Control, Analog, System Implementation	Sensors, DC motor, Encoder, Servo, SMA, Solenoid, Stepper
Santa Clara University	Atmega163	Electronics A/D, D/A converters, op- amps, filters, power devices; software program design, event-driven programming; hardware and DC Stepper Motors, solenoids, and robust sensing.	Operational amplifiers and comparators. Controlling a dc motor. Controlling a stepper motor. Finding information in data sheets. Pulse width modulation. Phenomenon encountered with a DC motor. Limitations of purely software techniques.

North Carolina University	Parallax BASIC Stamp	Analog circuits and electronic components, logic gates, introduction to microprocessor architecture, sensors and actuators, A/D and D/A conversion and data acquisition, sensor interfacing and signal conditioning, real-time programming concepts, intelligent control fundamentals, direct digital control implementation, principles of mechatronic design synthesis, and components analysis.	programming, working with microprocessors, and interfacing sensors and actuators
Northwestern University	The Handyboard single-board computer	Introduction to the design of microprocessor-controlled electromechanical systems. Interfacing sensors and actuators to a personal computer and a single-board computer. Electrical and mechanical design, prototyping, and construction. Dissection of a commercial mechatronic product	The Furby (motor control), The Furby (encoder and home switch), The Handyboard single-board computer,Sensors, actuators etc
University of Illinois	Texas instruments TMS320C6711	Mechatronics Computing, DSP Bios and UART, Encoders, DACs, PWMs, Parallel vs Serial Interfacing, Glue logic, Hardware interrupts, Robot control and navigation algorithms etc	Programming a Digital Signal Processor (DSP), Serial Communication, Input/Output with Daughter Card, Motor Control and Straight-Line Robot Driving, Robot Vision
Carnegie Mellon University	Motorola 68HC16	68HC16 microcontroller, basic controls, motor drives, mechanisms, sensors, IR communications, and motion planning	Microcontroller Battery Meter, MATLAB Simulation of Mechanical Controller, Motor Speed Controller, Ultrasonic Tracker, IR Communication/Tracker, Stair Climbing Robot.
Virginia Tech	Microchip PIC16F84	PIC processor and programming, Power amplification, Signal i/o, PIC A/D Converter, Sensors, Dynamic Modeling, Control theory, PM DC motors stepper motors etc.	VT84, MPLAB, A./D echo to LED array, Using a Cross Compiler, Open-loop PWM code, PID servomotor code.

Mini-Homework #2 Review of other universities' Mechatronics Courses.

University	Microprocessor	Theoretical Emphasis	Practical Emphasis	Rating
	Used			
Union College,	80C52-BASIC	Heavy on semiconductor and	Labs lead to final project	Too little microcontroller
Schenectady, NY		discrete components.	of interfacing PLC to	work.
		Microcontrollers instroduced at	one-axis machine tool	
		end of course.		
University of	Atmel AVR	Electromechanical Control	Labs leading to web-	Web-based controls
Wisconsin		Systems, Intelligent Interfaces,	based control of	sounds interesting, but I
		Web-based controls	microcontroller.	don't think the course
				should revolve around it.
University at	PC with	Introductory level (100-level	Introductory Level (100-	Too basic. Want to use
California	Labview	course)	level course),	an actual
		Analog & Digital Feedback	PC Control through	microcontroller, rather
		Systems	LabView	than a PC running
				LabView.
University if	6811 with	Discrete components,	Builds up to Palm pilot	Seems to be a very good
Guelph, Ontario	Handyboard	microcontrollers, sensors,	robot	mix of of all aspects of
<u>CA</u>		actuators, more		Mechatronics, building
				toward an interesting
				project, the Palm Pilot
				Robot.
University of	BASIC Stamp	Microprocessor usage, electro-	Team-based final project	Seems to be a good mix,
Pennsylvania		mechanical design		but didn't see anything
				that would suggest a
				regular lab.

University	Microprocessor	Theoretical Emphasis	Practical Emphasis	Rating
	Used			
Carnegie-Mellon	68HC16 /	Four-bar mechanisms, stepper	Team-based final	Final projects <u>look</u>
<u>University</u>	EMAC	motors, microcontroller use	projects	varied and interesting.
				Project loosely defined,
				allowing apparent
				variation.
Stanford	Microcore-11	System design, electro-	Labs leading to	Very interesting ideas for
<u>University</u>		mechanical devices,	Individual robot projects	projects! Head to head
		microcontrollers		competition sounds
				great! Lots of pics and
				video. Worth a look.
Northwestern	6811 with	C programming, discrete	Includes reverse	Always wondered what
<u>University</u>	Handyboard	components, digital design,	engineering a Furby,	was in a Furby.
		sensors, actuators, etc.	final project for students.	
University of	BASIC Stamp	Mechatronic systems,	Labs with autonomous	Project not inspiring.
Detroit-Mercy		microcontrollers, sensors,	ground vehicle	
		actuators, digital principals.		
John Hopkins	BASIC Stamp	Short lecture schedule, projects	Project: Autonomous	Too few lectures.
University'		seem to take over lectures	Blimp	
		midway through semester.		

Colorado State University
http://www.engr.colostate.edu/~dga/me307.html
ME307 Mechatronics and Measurement Systems
Topics:
Electric circuit fundamentals.
Signal processing & control
Digital electronics (number systems, logic)
PIC Microcontroller
Data collection and conversion
Sensors, actuators, motors.
Signal conditioning
Implementation:
12 Laboratory sessions with comprehensive coverage of course material.
Final Project
Comments:
This seems to be a very comprehensive course.

Virginia Tech
http://mechatronics.me.vt.edu/default.htm
ME 4734 Mechatronics
Topics:
A/D conversion
PIC C and assembly programming
Power amplification
Signal i/o, PIC A/D Converter
Sensors, motors and other actuators
Control theory, PLCs
Dynamic Modeling
Implementation:
Lab section: use MPLAB software, PICC C Lite compiler, VT84 boards, and PID motor controller
Final Project
Comments:

Carnegie Melon

http://www.ece.cmu.edu/~fedder/mechatronics/Syllabus.html#description

Mechatronic Design

Topics:

Use of 68HC16 microcontroller.

Motors, encoders, drivers.

Controls, Sensors.

Mechanisms, mobile platforms.

Stair-climbing, brainstorming.

communication protocols. Motion planning, cooperative robotics.

Implementation:

Course includes 5 laboratories and a main project involving a stair climbing device.

Comments:

San Jose University

http://www.engr.sjsu.edu/bjfurman/courses/ME106/ME106courseinfoFall02.htm

ME 106 Fundamentals of Mechatronics

Topics:

Analog and digital electronics

Sensors, transducers, actuators

Microprocessors. Use of Basic Stamp.

Op-Amps, Comparitors

A/D-D/A conversion, Signal conditioning

Logical Circuits

Motor sizing and selection

Implementation:

9 or 10 Laboratory sessions

Semester Long Team Project – Previous examples: smoke detector, little sojourner, widget sorter

Comments:

MIT http://web.mit.edu/2.737/www/

2.737 Mechatronics

Topics: Servo Motor Control Sampling/Aliasing; Signal Processing Digital Logic; Quadrature Encoders

Analog Power Amplifier Design

Brushless Motor Commutation and Control

Servo Motor Control

Implementation:

Course is centered around labs.

Use breadboards.

Class project: Past examples – polar coord plotter, laser light show.

Comments:

Northwestern University http://lims.mech.nwu.edu/~lynch/courses/ME395/

ME 395 Introduction to Mechatronics

Topics:

Interfacing sensors and actuators to a personal computer and a single-board computer Electrical and mechanical design, prototyping, and construction Mostly self-taught class. Instructor provides reference material and lab guidance.

Implementation:

Dissection of a commercial mechatronic product

Final computer-controlled electromechanical project

Laboratory Section, use of breadboards, motors, etc.

Comments:

Santa Clara University				
http://mech143.engr.scu.edu/materials.html				
Mech 143 Introduction to Mechatronics				
Topics:				
A/D, D/A convertion				
Op-amps, filters				
Power devices				
Software program design, event-driven programming				
Hardware and DC Stepper Motors, solenoids				
Robust sensing				
Implementation:				
Laboratory component				
Atmel AVRStudio 4.0 - Assembler and Programmer for Atmel AVR processors				
AVR-GCC (2001-12-14a) - C compiler for AVR processors				
PonyProg2000 2.05 Serial/Parallel port device programmer. Programs AVR processors, serial EEPROMs,				
PIC microcontrollers, etc				
Course project – ex: Creation of mini racecar that navigates a track and makes pit-stops.				
Comments:				

Union College				
http://cs.union.edu/~krouglin/mer180/				
MER-180 Mechatronics Design				
Topics:				
Design Philosophy, Number Systems				
Semiconductors, Diodes, Transistors, Op-Amps				
Logic Design				
Interfacing, Actuators, Sensors				
Microcontrollers + programming				
Implementation:				
Lab Sections				
Final Project involving control of a simple machine tool				
Comments:				

University of Nebraska - Lincoln				
http://robots.unl.edu/course_info/				
MECH 498/898 Mechatronic Systems Design				
Topics:				
Electrical and Mechanical Physical Modeling and Simulation				
Computers and Micro-controllers				
Analog / Digital Electronics				
Power Electronics				
Sensors, Transducers, Actuators				
Implementation:				
Lab Section making use of Basic Stamp II				
Open ended final project. Examples: Automatic towel dispenser, automatic trash can, motion follower.				
Comments:				

Penn State University				
http://www.me.psu.edu/lamancusa/mechatronics/advmech.htm				
ME 597D Advanced Mechatronics				
Topics:				
Sensors				
Motion Control				
System Modeling				
MicroComputer Architecture				
PIC Processors				
Serial Data Communication				
Discrete Digital Control				
Implementation:				
Lab Section making use of Basic Stamp II				
Final Project but little information about details.				
Comments:				

Though a variety of courses are being offered in Mechatronics in the area of North America, with some a major in it, the universities that are offering this course at an individual level are found to be relatively few in my observation. (Considering a course on Robotics cannot be detailed under mechatronics) The list of Universities that had offered or offering Mechatronics with their course website addresses presently are:

1. Virginia Tech Poly and State University:

Mechatronics.me.vt.edu/default.htm Syllabus is at: <u>http://www.mechatronics.me.vt.edu/syllabus.html</u>

It has got a good structure of course and lab in the end arriving at a project. The course focuses on V84 proto type board construction, PIC processor assembly programming, sensors, actuators, real time systems, etc. Web is provided with all reference material for the processor, board, and text books and also with the previous project listings. (fall 2002)

2. Carnegie Mellon : <u>http://www.ece.cmu.edu/~fedder/mechatronics/Syllabus.html</u> This course was offered during spring 1998. Stair-case Climbing-Robot making was the aim of the class. Good emphasis was given for both theory and practice.

3. John Hopkins University: http://caesar.me.jhu.edu/mechatronics/syllabus.doc It was Graduate course subtitled as Branching Robot. The course details were not clearly laid out But it includes lectures on Dynamics, Simulation and Pseudo-Code. Suggested textbooks have been given. No microprocessor was separately listed for the course and project.

4. University of California, Riverside:

http://www.engr.ucr.edu/~hkim/Mechatronics/syllabus.pdf

The course was introduction to Mechatronics. It was offered for winter 2002. Theory covered all the fundamental electronic devices and working and some mechanical topics like stress, strain, vibration, sensors and actuators and motors. Lab experiments are conducted using equipment like PCI-1200 converters, 24 bit converter, and PWM amplifier.

5. Tennessee Tech University

http://www.tntech.edu/me/courses/Canfield/me4370/

The special feature of the course is its project titled Robot Wars that was Robot war competition between the robots from different teams in the class. The aim was to built robots that must be capable of traversing and finding its way through an unknown terrain filled with corridors, hazardous obstacles and an open arena to deliver your team flag to its destination.

6. Santa Clara University, Canada

http://mech143.engr.scu.edu/course.html

This class will be based on a similar one-quarter mechatronics class at Stanford University. Atmel STK500 is used for lab experiments.

7. University of Manitoba, Canada.

http://www.umanitoba.ca/cgi-

bin/faculties/engineering/courses/outline.cgi?dept_no=025&course_no=490

This course is titled as Mechatronics System Design. The course is integration of mechanical, electronic and software components towards building mechatronic devices.

8. University of Toronto, Canada.

http://www.control.utoronto.ca/~omidj/Teaching/outline.htm

The course is on Analog and Digital Electronics for Mechatronics. It consists both lab and theory. It has no final project and computer programming for the circuits. As the title suggests focuses Electronics equipment of Mechatronics. 9.NC State University.

http://courses.ncsu.edu:8020/mae534/lec/001/course_info.html

In addition to normal course structure of mechatronics it also includes design theory.

10. Kettering University

http://www.kettering.edu/~jhargrov/mechatrn/me-480.htm1

Course contains all the elements to design a project. Lab covers experiments for all the course structure. There is no final project.

11. San Jose State University

N:\Mechatronic course listings\Mechatronic Systems Engineering.htm

It is a fundamental course on mehatronics for undergraduates. Not much details are found.

12. University of Michigan

http://www.egr.msu.edu/classes/me491-602/

It is a course on Mechatronic Modeling and Simulation. Does not contain Mechatronic lab. Includes a design project.

College or University	Microprocessor	Emphasis on theory	Practical Emphasis	Any other Remaks
Tennessee Tech Univeristy	HC12 Microcontroller	Well	Lab details are not to be found in detail. But good	Final project demo is inspiriting being a war simulation betn robots.
Virginia Tech	PIC processor V84 board	Well structured course	Good	Both theory and practicals are coordinated.
Carnegie Mellon	68HC16 microcontroller	Good	Well.	More practical emphasis is given.
John Hopkins	Not mentioned	Fair, complete details are not to be found	Mainly focused on practical construction of a Branching Robot	Design and simulation starts early in the course.
Rensselar Polytechnic Institute		Well	Good	It is design oriented. No demo project
University of California, Riverside	Not mentioned Other devices used are : PCI-1200 (AD/DA converters) PWM amplifier (LMD18200)	Well	Well	Two projects have been done finally C programming was used
Kettering University	Not mentioned any specific processor	Good. But all topics are not specified in deetail	Lab experiments are ok. It lacks a final project.	Reverse Engineering was done in first session of lab
San Jose State University	Not found	Good	fair	Not much details are found. No project
University of Manitoba	Not specified	fair	fair	Design oriented
Santa Clara University	Not specified	Contents are Good.	Good	Variety of projects are to be found

MiniHW2_Gavirneni

Disclaimer: The assignment was to find what other universities offer in Mechatronics. Many universities do not have a compact form for examining course offerings- some lack certain required specifics for this assignment. I included some incomplete universities here because I feel they are interesting for particular reasons.

1. McGill University

http://www.mcgill.ca/mecheng/undergrad/curriculum/mechatronics/ Students in this option must take the following four (4) required courses:

MECH-413	Control Systems			
MECH-554	Microprocessors for Mech. Sys.			
MECH-557	Mechatronics Design			
MECH-572	Introduction to Robotics			
And two of the following:				
MECH-528	Product Design			
MECH-541	Kinematics Synthesis			
MECH-573	Mechanics of Robotic Systems			
MECH-576	Computer Graphics and Geometric Modelling			
ECSE-502	Control Engineering			

MECH-557 Mechatronics Design

3 credits

(Prerequisites: ECSE-461, MECH-383 and MECH-412) Team project course on the design, modeling, model validation, and control of complete mechatronic systems, constructed with modern sensors, actuators, real time.

McGill University was included in my report because they have an entire Mechatronics degree option. Their course descriptions do not have which electronics package they are using. I attached a course description to show the amount of available information. I feel this is a great offering for students and is noteworthy.

2. University of Vermont

http://mechatronics.me.vt.edu/default.htm

Construction of the VT84 PC board

What to know before you begin

This section covers the construction of the VT84 prototyping board. The VT84 is a versatile development system for the Microchip PIC16F84 processor. Its capabilities include:

Spring 2002 Student Project Summary:

• <u>Auto Etch-A-Sketch ;Auto Video Stabilizer; Automatic Card Dealer; Automatic Golf Ball Tee</u> ;<u>Drinking Cup Stabilizer;Glass Bottle Sorter;Light Follower</u>

Nicholas Gill- Mini Assignment 2

<u>Morphing Wing Sports Ball Pump; Submarine Fin Control; Traction Control System</u>

The Mechatronics course and laboratory are designed to cater to both mechanical and electrical engineering students exploring areas outside of the normal core curricula. Because of this, the prerequisites are different for each discipline. The **prerequisites** are:

Mechanical Engineering Students: ME 3514 (System Dynamics) Electrical and Computer Engineering Students: ECpE 3714 (Circuits, Signals, and Systems)

This class seems very similar to the UB class. They are using the Vt84 prototyping board and the pic16F84 microchip. They have labs and a class session. In the end of the class there is a final project.

3. University of Utah

http://www.mech.utah.edu/~me3200/

The University of Utah uses the Lego robot kit. It uses a C programming system on the IC4 PIC. They are also using the handy board.

This class has labs and a classroom setting. The curriculum, in the second half of the class focuses more on systems design with Bode plots and developing differential equations. It is important to note that this is a two-semester class. I like this because it doesn't force a student to major in Mechatronics, but rather get a sampling of what Mechatronics can offer.

4. University of Michigan

http://www.egr.msu.edu/classes/me491-602/clo.html MEA 491/602 Mechatronic system Modelling and Simulation

This class is theoretical. There are no labs. The main focus is on developing and modifying multi-port systems.

5. University of San Jose

http://www.engr.sjsu.edu/bjfurman/mechatronics/courses.htm

This school, like McGill University, has a large course offering for Mechatronics. There are over ten courses listed in Mechatronics design.

One class is very similar to ours at UB. MAE 106 uses the Basic stamp. They do several labs and a final project. One interesting focus they have is motor selection.

6. NC state University

<u>MAE 534: Mechatronics Design (S, D)</u> Principles of Mechatronics Design, review of logic gates, microprocessor architecture, sensors and actuators, A/D and D/A conversion techniques, real-time multi-tasking programming concepts, direct digital control

implementation. "Hands-on" experience through several laboratory assignments and final team project.

This school, like many schools, does not list the exact specifics of the course, but the class seems very similar the UB class. There are labs with a class lecture.

7. Kettering University

http://www.gmi.edu/~jhargrov/mechatrn/mechatrn.htm

This class is MAE 480. It uses the Toshiba TLCS-900H "microprocessor trainer and evaluation board". LED, LCD's, Sensors, Actuators, and Instrumentation are the main topics of the 7 labs. The programming language is in C.

8. Georgia Institute of Technology

http://www.me.gatech.edu/me/academics/graduate/sem_conv/ME6405.htm Topics:

- 16-Bit microprocessor: introduction, hardware overview, programming, interrupts, on-chip subsystems, parallel I/O
- Choice of embedded computers; choice of level of languages: assembly, high level, object oriented for real-time programming (such as C), Simulink
- Analog and digital devices: Op-amp, ADC, DAC, and power transistors
- Sensors, actuators, and their applications to intelligent manufacturing and mechatronic systems
- Modelling and control of electro-mechanical systems
- Modelling of various actuators: (DC motors, stepper motors, induction motors), and sensors (position, velocity, force, tactile, and ultrasonic)

The syllabus for ME 6405 does not list which IC or programming language is used. There are similar topics covered as in the UB class. One common theme in most classes that our class does not have is systems modelling. All MEA students at UB must take SYS 336, and it is most likely not necessary to repeat the information for this class.

9. Stanford University

http://design.stanford.edu/Courses/me118/me118.html

MEA 118, at Stanford University, has an array of different microchips and processors, because the equipment for the lab was donated by several different companies. The specifics for this course are not public. There is a lab and a lecture for this class. It is offered to both electrical and mechanical engineers.

10. University of Waterloo from Canada <u>http://www.me.uwaterloo.ca/~mechatro/</u>

I end with the University of Waterloo. They offer a whole Mechatronics major that is interdisciplinary with electrical, and computer engineers. There is a list of course offerings that focus on systems, computers, electronics, and mechanics, but I cannot get specific information on any of the courses.

<u>Assignment 2</u>

Mechatronics courses in North America

No	University	Course Description	
			(Out of five)
1	Massachusetts Institute of	Computer hard disk drive is an example of a complex mechatronic system	****
	technology	discussed in this course. Includes topics such as aliasing, quantization,	
	2.737 Mechatronics	electronic feedback, power amplifiers, digital logic, encoder interfacing,	
		and motor control. Lab facilities feature dSPACE digital signal processors	
		which are programmed through Simulink used for this course. Includes	
		group project. Details of microprocessor used are not mentioned on the	
		website.	
2	Virginia Tech	VT84 board & PIC16F84 processor used, Includes term project, PIC	****
	ME/ECpE 4734 Mechatronics	assembly & C programming, Control theory review, PLC and real time	
		systems	
3	University of Maryland, College	Includes a project with constrains, like payload, power etc., sensor design,	****
	Park	research and businesses in Japan in mechatronics, labs and demos of motor	
	ENME 489L Mechatronics	drives, sensors, mills, lathes, Image craft C, EPROM code. Details of	
		microprocessor used are not mentioned on the web site.	
4	University of Texas Austin	Includes lab, final project, M68HC11 microcontroller, digital logic,	****
	ME 348/392Q Introduction to	discrete components, combinatorial and sequential logic, serial and parallel	
	Mechatronics II	communications, LabVIEW [™] graphical user environment for data	
		acquisition and computer control	
5	University of Illinois Urbana	Course emphasizes more on control theories of a mechatronic system.	****
	Champaign	Topics include, Fundamental electrical and mechanical laws needed for a	
	ME 468. Modeling and Control of	general dynamical machine model, power electronics for control of	
	Electro-Mechanical Systems	electrical machines, control objectives for electrical machine systems in	
		typical applications (actuators, automated vehicles, robotics, variable speed	

		drives), potential of the microprocessors and the VLSI technology for the	
		real time implementation of control techniques. Details of microprocessor	
		used and lab are not mentioned on the web site.	
6	Georgia Institute of Technology	16-Bit microprocessor used, includes modeling of various actuators and	****
	ME 6405 Introduction to	sensors, assembly, high level, object oriented techniques for real-time	
	Mechatronics	programming. Group project 30 %, and lab.	
7	Texas A & M, College Station	Analysis and applications of computerized machinery, actuators and	****
	667 Mechatronics	sensors, high level programming languages, A/D and D/A converters,	
		PWM, real time control, Includes a term project, Details of microprocessor	
		used is not mentioned	
8	University of California LA	Have separate courses for lab and class. Course includes motion and	****
	163A Introduction to Computer-	command generation, servo-controller design, and computer/machine	
	Controlled Machines (class)	interfacing, Lab includes robotic devices and articulated machines,	
	163C. Robotics and Motion Control	programming of industrial robots. Details of microprocessor used are not	
	Laboratory (Lab)	mentioned on the web site.	
9	NC State University	Microprocessor used is not mentioned on website. Programming in C for	****
	MAE 534 Mechatronics Design	embedded systems, analog circuits and electronic components, real-time	
		programming concepts, intelligent control fundamentals, direct digital	
		control implementation, principles of mechatronic design synthesis, and	
		components analysis. Also includes group project and lab	
10	University of Washington	Assembly language programming, interfaces, and communications.	****
	ME477 Embedded Computing in	Particular emphasis on design of hardware and software interfaces for real-	
	Mechanical Systems	time interaction with mechanical systems. Microprocessor used is not	
		mentioned on website. Includes lab.	

Chetan Jadhav Person # 30429541

Mechatronics course in North American Universities

Mechatronics Assignment 2 Preeti Joshi psjoshi@acsu.buffalo.edu http://www.acsu.buffalo.edu/~psjoshi/

	University	Website	Uc used	*Theoretic al emphasis	Practical emphasis
1	Rutgers	http://cronos.rutgers.edu/~mavro/robot/525s vllabus.htm	not mentioned	50%	50%
2	Stanford	http://design.stanford.edu/Courses/me118/ht ml/course.html	not mentioned	35%	65% Good Projects
3	Virginia Tech	http://mechatronics.me.vt.edu/home.html GOOD COURSE	PIC	45%	55%
4	Carnegie Mellon	http://www.ece.cmu.edu/~fedder/mechatron ics/Syllabus.html#outline	68HC16	0%	100%
5	Univ of Wisconsin Madison	http://mechatronics.me.wisc.edu/me601/def ault.htm	ATMEL 8535	more	less
6	Univ of Pennsylvania	http://www.cis.upenn.edu/~jpo/Courses/ME	BASIC Stamp II	equal	equal
7	University of Massachusetts	http://www.ecs.umass.edu/mie/courses/fall2 002/mie402/402_2002Fall_Syllabus.pdf	Stump II	20%	80%
8	Penn State	http://www.me.psu.edu/lamancusa/mechatr onics/advmech.htm GOOD COURSE	PIC, Basic Stamp II	50%	50%
9	Colorado State University	http://www.engr.colostate.edu/~dga/me307. html	PIC	60%	40%
10	Washington State University	http://www.mme.wsu.edu/academics/course s/syllabi/me/me401.html	not mentioned	40%	60%
11	University of Delaware	http://www.cis.udel.edu/~chester/courses/68 5.html	PIC 16F876	more	less

* Analysis of theoretical and Practical emphasis is dependent on the grading policy.

	University	Link	Notes
1	John Hopkins	http://caesar.me.jhu.edu/mechatronics/syl	Use Mindstorm Kit. Final
	University	<u>labus2000.htm</u>	project is to design a
			Brachiating Robot.
2	Univ. of Pittsburgh	http://fie.engrng.pitt.edu/fie95/4a1/4a13/	3 mini projects and 1 final
		<u>4a13.htm</u>	project where in a group of 4
			people each student chips in
			with \$75 to do the project
3	Univ. of Illinois,	http://motion.csl.uiuc.edu/~bullo/ge330/d	9 labs about various robot
	Urbana Champaign	escription/	parts + 1 final Project which
			can be chosen by the group.
4	Carnegie Mellon	http://www.ece.cmu.edu/~fedder/mechatr	Use 68HC16 microcontroller.
		<u>onics/Syllabus.ntml</u>	5 small projects and final
			Climbing Demonstration
5	Colorado Stata	http://www.apgr.colostate.adu/_dga/ma2	More theoretical course
<u> </u>	Univ	07 html	Have 3 evens. A small lab
	UIIIV.	<u>07.nnm</u>	every week and one final
			project Use PIC
			Microcontroller
6	Univ of California	http://www-	Spend the whole semester
<u> </u>	Berkelev	inst.eecs.berkelev.edu/~ee192/	building a race car and they
	<u></u>		complete with each other to
			see who builds the best one.
			Funded by National
			Semiconductor.
7	Univ. of Utah	http://www.mech.utah.edu/~me3200/	Use a Motorola 68HC11
			Microcontroller. Equal
			balance between practical &
			theoretical. 40% Labs, 60%
			HW's & Exams.
8	Virginia Tech.	http://mechatronics.me.vt.edu/Labs/labs.	Use PIC microprocessor and
		html	have 5 labs over the semester
			+ 1 final project which the
			students get to pick.
9	Tennessee Tech.	http://www.tntech.edu/me/courses/Canfie	Use HC12 A/D converter
		<u>10/me4370/</u>	practical emphasis Final project
			is to design a robot to compete in
			Robot wars!
10	RPI	http://www.rpi.edu/~craigk/Coursework/	10 lab assignments. No group
		<u>S&A_Course_Introduction.PDF</u>	work and no final project.

MAE 476 Mini Assignment 2

RANK	NAME OF THE	WEB PAGE	PROCESSOR USED	ANALYSIS
1	Stanford Univeristy	http://cdr.stanford.edu/spdl/	MC68HC11	More emphasis on projects. Has more course content which is divided into 3 quarters. But contains more basic mechatronics in first quarter.
2	Colarado state university	http://www.engr.colostate.edu/~dga/me307.html	Use a PIC controller (did not mention anything specific)	Have a lab session with quizzes and tests.More emphasis on lab and implementation.
3	Carnegie mellon university	http://www.ece.cmu.edu/~fedder/mechatronics/	Use 68HC16 microcontroller	Grading is involved only with lab work and project. No class work assignments. Very practical grading.
4	Virginia Tech	http://mechatronics.me.vt.edu/	Use VT84 prototyping board	Varied lab projects and course content is more precise than general
5	California Polytechnic State University	http://me.calpoly.edu/mecha/mecha.html	MC 6802	Has more emphasis on theory more than lab. Lab is not included and more focus is on programming microcontrollers in specialization for mechanical engineers.
6	University of Utah	http://www.mech.utah.edu/~me3200/	Motorola 68HC11	Has two parts for the course in order to make a more extensive lab understanding and knowledge of mechatronics.
7	Northwestern university	http://lims.mech.northwestern.edu/~lynch/courses/ME333/2003/	68HC11 and 68HC16	Has more generalized course offering. Includes lab with more different variety of projects being done
8	John hopkins University	http://custer.me.jhu.edu/html/mechatronics.html	CPU of the lego mindstroms kit Product name H8/3292	Their course objective for spring 2002 was to develop a self – replicating robot. They do different projects in different semesters.

MiniHW2_Kandula

9	University of Nebraska lincoln	http://robots.unl.edu/classes/498/	Use <u>Parallax</u> Micro-controller (Model: basic stamp II)	Course content is of primary importance in grading even though a good lab scheduling is observed. Has more theoretical emphasis rather than lab experiments
10	Santa clara university	http://mech143.engr.scu.edu/course.html	ATMEL STK 500	Has more emphasis on course work. Has less varied projects. Included lab sessions.

Name : madan mohan reddy, kandula Person number : 30197085 e-mail : mmreddy@byffalo.edu MiniHW2_Kimothi

MECHATRONICS- MAE576 MINI-ASSIGNMENT #2

Submitted by: Gaurav Kimothi UB Person No.: 3059-5804 <u>gkimothi@buffalo.edu</u> MiniHW2_Kimothi

Criteria				
	Theoretical	Practical	Microprocessor/Microcontroller	Web Page
	Emphasis	Emphasis	Used	
University				
San Jose	Good	Average	Basic Stamp	http://www.engr.
State				<u>sjsu.edu/bjfurman/</u>
University				mechatronics/courses.htm
University	Too High	Average	Not specified	http://www.mech.utah.edu/
of Utah				<u>~santosh/mechatronics.html</u>
Virginia	Average	Average	PIC16F84 microcontroller	http://mechatronics.me.vt.edu/
Tech				<u>default.htm</u>
Carnegie	Average	Good	68HC16 microcontroller	http://www.ece.cmu.edu/
Mellon				~fedder/mechatronics/
University				Syllabus.html#description
John	Below	Good	Not specified	http://custer.me.jhu.edu/
Hopkins	average			html/mechatronics.html
University				
North	Good	Good	Not specified	http://courses.ncsu.edu:8020/
Carolina				mae534/lec/001/
State				
University				
Colorado	Good	Average	Not specified	http://www.engr.colostate.edu/
State				<u>~dga/me307.html</u>
University				
San Diego	Below	Average	Not specified	http://kahuna.sdsu.edu/
State	average			~mechtron/mechatronics/
University				
Michigan	Good	Below	Not specified	http://www.egr.msu.edu/classes/
State		average		me491-602/clo.html
University				
Kettering	Average	Average	Not specified	http://www.gmi.edu/~jhargrov/
University				mechatrn/mechatrn.htm

Universities	Theoretical emphasis,	Practical emphasis
	Microprocessor used.	
The Ohio State University.	Emphasis Introduction to multi- domain systems. Mechanical, thermal, fluid, electrical, electronic, electro-mechanical system dynamics. Emphasis on modeling and simulation of hybrid systems using modern computer-aided tools.	Emphasis on ion gas sensing, use of exhaust gas sensors, transmission shift control, hybrid vehicle control strategies. Testing, evaluation, and application of solid state gas sensors.
Michigan State University	Real time digital measurement, control programming for mechanical engineering systems	Analog to digital and Digital to analog converters, Time/counters, Closed loop and Open loop controls, and instrument interfaces.
Clemson state university	Concepts of design, appropriate dynamic system modeling, analysis, sensors, actuating devices, and real-time microprocessor interfacing and control.	Mechatronics integrates control, sensors, actuators and computers to create a variety of electromechanical products; Case studies, simulation and projects are used to exemplify the system design principles.
University of Colorado, at Boulder.	Explores design principles of robot manipulators, including grippers, control systems, sensing techniques, and robot applications. Microprocessor interfacing and control. Addresses issues of micro-electro-mechanical systems (MEMS) modeling, design, and fabrication.	Emphasizes the design and fabrication of sensors and actuators due to significance of these devices in optics, medical instruments, navigation components, communications, and robotics. Various optical instruments are available to verify the electromechanical behavior of fabricated MEMS in real time as a function of environmental temperature and pressure. For temporal response studies, an optical interferometer is available

Massachusetts Institute of Technology.	Control theory and application, modeling, system theory, optics, quantum computing, information technology and applications.	Electromechanical models, dissipateors, transformers, gyrators. Modification of system characteristics using feedback. State observers, Kalman filters. Modeling/performance trade-offs in control system design. Emphasis on application of techniques to physical systems.
University of Illinois at Urbana	Control objectives for electrical machine systems in typical applications (actuators, automated vehicles, robotics, variable speed drives) Feedback linearization techniques for achieving control objectives. Nonlinear composite control techniques as applied to electrical machines Comparison of feedback linearization techniques and nonlinear composite control techniques in terms of accuracy and measurement requirements Time scale separation in dynamical models of electrical machines (together with the power electronics support) Potential of the microprocessors and the VLSI technology for the real time implementation of control techniques.	MEMS sensors and actuators are employed to study materials' behavior at nano meter scale. The objective is to understand the mechanisms of deformation and strengthening of metals at small scale. The non-linear dynamical response of MEMS actuators subjected to light pressure. Mechanotransduction of single living cells subjected to mechanical force by MEMS actuators. The response of the cell is measured by MEMS force sensors. The equipment consist of a custom made probe stations with 12K magnification, image acquisition and processing hardware and software, TV-VCR, a complete cell culture facility.
University of Waterloo, Ontario.	Review of modeling and approximation of dynamic systems. Review of classical control theory. Electronic realization of control elements and compensations: ideal and real PID. Introduction to microcontrollers. Elements of digital control theory: sampling theorem, z-transform and digital filters. Kinematics: coordinate frames and transformations, forward and inverse kinematics 7	Review of computer interfacing, power amplifiers, sequential logic, encoders, and motor control. The course involves practical projects and significant laboratory usage. physical configuration & workspace, joint position measurement and control, robot controller operation 7 Programming: motion types & applications, digital I/O and program flow control 7 Sensor-based operation: seam tracking & force feedback control Machine