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Branch and Bound

We have seen this semester that the size of real-world 
problems grows very large  as the number of design 
variables increases.
Recall that there are (n-1)!/2 different solutions for the 
Travelling Salesman Problem (TSP).
Exhaustive search is impractical when n>20
It would be helpful of we could reduce the size of the 
search space where we know the optimum solution will not 
exist.



Branch and Bound

Branch and Bound works on the idea of successively 
partitioning the design space.  
1st we need some means on determining a lower bound on 
the cost of any particular solution.
A lower bound on a solution means the solution will cost 
at least the value of this lower bound.
If we are maximizing the we need to find an upper bound 
on a solution - a value which this solution cannot exceed



Branch and Bound

For minimization
– If we have a solution 1 with a cost c
– AND we know that another solution 2  has 

lower bound that is greater than c
– THEN we do not need to evaluate 2 because 

we know that 2 will exceed 1.



Branch and Bound

For maximization
– If we have a solution 1 with a cost c
– AND we know that another solution 2  has 

upper bound that is less than c
– THEN we do not need to evaluate 2 because 

we know that 2 will never exceed 1.



Branch and Bound

We can determine an lower or upper bound by partially 
evaluating a particular solution.
Example using TSP:
Say we evaluate a partial tour of a TSP with 15 cities and 
after 8 cities it already exceeds our best solution so far.

1
8

There is no need to evaluate the rest of the tour

AND there is no need to evaluate the other tours that start with
those 8 cities!!!!



Branch and Bound

The design space can be organized in a tree structure
The branch and bound prunes away branches that are not 
of interest.
The design space of the TSP can be organized on the basis 
of whether or not edge (1 2) occurs in the solution.
It can be further divided into branches where edge (2 3) 
appears and so forth.



Branch and Bound
S

Consider the search space of 
a 5 city TSP 12 total 
solutions
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Branch and Bound

Suppose the cost can for travelling between cities is 
described by the following cost matrix.

0,7,12,8,11
7,0,10,7,13
12,10,0,9,12
8 ,7 ,9 ,0 ,10
11,13,12,10,0

C  =

•Each entry is the cost of travelling from a city in the ith row 
to one in the jth column.

•The zeros down the diagonal indicate that you cannot travel 
from a city to itself



Branch and Bound

Given the search tree we need a heuristic for estimation a 
lower bound on the cost of any final solution, or even any 
solution containing a particular node (i.e. city)
If the lower bound is higher than the best solution we have 
found so far, we can keep looking without having to 
actually compute its final cost. 



Branch and Bound

Here is a simple but not very effectual way to compute a 
lower bound for a tour.
Consider a complete solution for the TSP.
Every tour comprises 2 adjacent edges for every city, one 
edge enters the city, one edge goes on to the next city.
If we select the two shortest edges that are connected to 
each city and take the sum of these edges divided by 2 we 
will obtain a lower bound.
We could not possibly do better because this selects the 
very best edges for all the cities.



Branch and Bound
With respect to the cost matrix this turns out to be

0,7,12,8,11
7,0,10,7,13
12,10,0,9,12
8 ,7 ,9 ,0 ,10
11,13,12,10,0

C  =

[(7+8)+(7+7)+(9+10)+(7+8)+(10+11)]/2=84/2=42
Note: 7 and 8 correspond to the two best values in column 1

• Note that 7 and 8 in the first parentheses correspond to the 
lengths of the two shortest edges connected to city 1 
whereas the 7 and 7 correspond to the lengths of the two 
shortest edges connected to city 2 and so on



Branch and Bound

At first glance this may seem to be good way find a good 
solution but it is important to note that determining the 
lower bound does not specify a solution.
It is not possible to specify a solution that incorporates all 
of these shortest edges because it is generally necessary to 
specify bad edges to form a legal tour.



Branch and Bound

Once some edges are specified we can incorporate that 
information and calculate a lower bound on that partial 
solution.   
If we knew that edge (2 3) were included but edge (1 2)
was not then the lower bound on the partial solution would 
be:

[(8+11)+(7+10)+(9+10)+
(7+8)+(10+11)]/2=45.5 

0,7,12,8,11
7,0,10,7,13
12,10,0,9,12
8 ,7 ,9 ,0 ,10
11,13,12,10,0

C  =



Branch and Bound

We can improve the lower bound by including the implied 
edges or excluding those that cannot occur.
If we determined that edges (1 2) and (2 4) were included 
in a tour then we would get a lower bound of 42.
But with these two edges included we can exclude   edge 
(1 4) which would raise the lower bound to 44.



Branch and Bound

Exercise:  Show that with edges (1 2) and (2 4) included 
the lower bound is 44. 

0,7,12,8,11
7,0,10,7,13
12,10,0,9,12
8 ,7 ,9 ,0 ,10
11,13,12,10,0

C  = [(    )+(   ) + (    ) + (   ) + (   )]/2=



Branch and Bound

It is important to recognize that is cost time to compute the 
lower bounds
The cost of computing the lower bounds has to be made up 
in the time saved in pruning the tree.
So we want the best lower bound possible, to ensure 
efficient pruning.
This is the subject of much research.



Branch and Bound - Continuous Problems

The branch and bound algorithm can also be applied to 
continuous problems.
The idea here is to iteratively subdivide the design space 
into regions and check each region to see if there is a single 
or multiple local optima.
This check is performed by testing to see if the partial 
derivatives are always negative or positive.  
If the area is monotonic then a lower bound is computed for 
it.
If not, then the region is further subdivided.
Regions are eliminated whose lower bounds are greater 
than the best solution found thus far.



Branch and Bound

Lower bounds can be computed by looking at the edges of 
each monotonic region.

Decreasing F

Lower Bound

for Region

Lower Bound

for Region



Branch and Bound

There are many variants of this generic branch and bound 
algorithm
– Interval analysis can be used to determine the bounds 

where the calculations are performed on intervals 
instead of on real number

– A stochastic version of the algorithm calculates f at 
random points to determine a lower bound.

We will go into the application of Branch and Bound to 
continuous problems in more detail next lecture


