
MAE 552 – Heuristic Optimization

Lecture 22

March 15, 2002

Topic: Tabu Search

http://www.cs.sandia.gov/opt/survey/ts.html

Tabu Search –

When we discussed Simulated Annealing the use of
the Temperature parameter allowed the search to
escape local optima.

Another method ‘Tabu Search’ uses another method
to accomplish the same task.

A ‘memory’ forces the search to explore new areas
of the search space.

Tabu Search –

Already
Explored

Already
Explored

Unexplored

Algorithm ‘remembers’where is was and is directed
to new unexplored areas of the search space

Tabu Search - Characteristics

Unlike SA, Tabu Search is deterministic

The overall approach is to avoid entrainment in
cycles by forbidding or penalizing moves which take
the solution, in the next iteration, to points in the
solution space previously visited (hence "Tabu").

Tabu search is essentially an extension of steepest
descent. At each iteration we examine the entire
neighborhood and choose the best move not
classified `Tabu.

Tabu Search –Origins

The Tabu search is fairly new, Glover attributes it's
origin to about 1977 (see Glover, 1977).

The method is still actively researched, and is
continuing to evolve and improve.

The Tabu method was partly motivated by the
observation that human behavior appears to operate
with a random element that leads to inconsistent
behavior given similar circumstances.

As Glover points out, the resulting tendency to
deviate from a charted course, might be regretted as
a source of error but can also prove to be source of
gain.

Tabu Search –

Instead the Tabu search proceeds according to the
supposition that there is no point in accepting a new
(poor) solution unless it is to avoid a path already
investigated.

This insures new regions of a problems solution
space will be investigated in with the goal of
avoiding local minima and ultimately finding the
desired solution.

Tabu Search –Move 1

F(x)

X

Tabu Search – Move 2

F(x)

X

Solution 1

Tabu Search – Move 3

F(x)

X

Solutions 1
and 2 ‘Tabu’

Tabu Search – Move 4

F(x)

X

Solutions 1
and 2 and 3
‘Tabu’

Making previous candidate solutions Tabu allows
search to escape local optima

Tabu Search – Move 4

F(x)

X
•This is important because a strategy of simply choosing the

best move would lead us to get stuck at a local optimum

Improving
Move returns
to local opt.

Poor Move
allows escape
from local opt.

Tabu Search

The Tabu search begins by marching to a local
minima.To avoid retracing the steps used, the
method records recent moves in one or more Tabu
lists.

The role of the memory can change as the algorithm
proceeds.

– At initialization the goal is make a coarse
examination of the solution space, known as
'diversification’.

– As candidate locations are identified the search is
more focused to produce local optimal solutions
in a process of 'intensification'.

Tabu Search

In many cases the differences between the various
implementations of the Tabu method have to do with
the size, variability, and adaptability of the Tabu
memory to a particular problem domain.

The Tabu search has traditionally been used on
combinatorial optimization problems.

The technique is straightforwardly applied to
continuous functions by choosing a discrete
encoding of the problem.

Many of the applications in the literature involve
integer programming problems, scheduling, routing,
traveling salesman and related problems.

Tabu Search –Basic Ingredients

Many solution approaches are characterized by
identifying a neighborhood of a given solution
which contains other so-called transformed solutions
that can be reached in a single iteration.

A transition from a feasible solution to a transformed
feasible solution is referred to as a move.

A starting point for Tabu search is to note that such a
move may be described by a set of one or more
attributes (or elements).

These attributes (properly chosen) can become the
foundation for creating an attribute based memory.

Tabu Search

Following a steepest descent / mildest ascent
approach, a move may either result in a best possible
improvement or a least possible deterioration of the
objective function value.

Without additional control, however, such a process
can cause a locally optimal solution to be re-visited
immediately after moving to a neighbor, or in a
future stage of the search process, respectively.

To prevent the search from endlessly cycling
between the same solutions, a tabu list is created
which operates like a short term memory.

Tabu Search –

Attributes of all explored moves are stored in a list
named a running list representing the trajectory of
solutions encountered.

Then, related to a sublist of the running list a so-
called tabu list may be introduced. Based on certain
restrictions

The tabu list implicitly keeps track of moves (or
more precisely, salient features of these moves) by
recording attributes complementary to those of the
running list.

Tabu Search –

These attributes will be forbidden from being
embodied in moves selected in at least one
subsequent iteration because their inclusion might
lead back to a previously visited solution.

Thus, the tabu list restricts the search to a subset of
admissible moves (consisting of admissible attributes
or combinations of attributes).

The goal is to permit "good" moves in each iteration
without re-visiting solutions already encountered.

Tabu Search – Pseudo-Code
Given a feasible solution x* with objective function value z*:

Let x := x* with z(x) = z*.

Iteration:

while stopping criterion is not fulfilled do

begin

(1) select best admissible move that transforms x into x' with objective function value

z(x') and add its attributes to the running list

(2) perform tabu list management: compute moves (or attributes) to be set tabu, i.e.,

update the tabu list

(3) perform exchanges:

x = x', z(x) = z(x');

if z(x) < z* then

z* = z(x), x* = x

endif

endwhile

Result: x* is the best of all determined solutions, with objective function value z*.

