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ANOVA
•Now that we have determined the variation in 
performance due to each of our factors, we want to 
determine the variation due to error.

•The sum of squares due to error is given by:
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ANOVA
•So to solve for the error term for each experiment, 
ei, we must first define our problem.  Lets begin by 
considering the dimensionality of the problem.

•The total number of model parameters for our 
example is as follows:
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ANOVA
•The total number of constraints that we have is 4.  
They are that the sum of the level effects of each of 
our factors is 0.  So

a1+a2+a3 = 0
b1+b2+b3 = 0
c1+c2+c3 = 0
d1+d2+d3 = 0



ANOVA
•In our case, since the number of independent 
factors minus the number of constraints is equal to 
the number of experiments, each error term is 0 
and thus, the SOSDE is 0.

•This is saying that because of the way things 
worked out in this problem, it is always the case 
that the observation value is exactly predicted by 
the overall mean summed with the corresponding 
factor effects.  Demonstrated on next slide.



ANOVA
•Consider experiment 1:

-20 = -41.67+(-20+41.67)+(-30+41.67)+
(-50+41.67)+(-45+41.67)

-20 = 3*41.67-145

-20 = -20



ANOVA
•Can anyone speculate about this property when 
applied to orthogonal arrays in general?

•It turns our that if your experiment exactly fits into 
one of the orthogonal arrays, this is always the case 
Otherwise, there will be some error incurred with 
the experiments.



ANOVA
•Quick not about the Total Sum of Squares.  
Because of the orthogonality of the matrix, it turns 
out that the TSOS is also given by the equation:

TSOS = ∑SOSDTFactors + SOSDTError

The following slide contains a typical tabular 
representation of the ANOVA results.
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ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA – DOF analysis
•Recall that DOF for something in general is the 
number of independent parameters associated with 
it.

•Our matrix experiment has some number of rows 
and each introduces a degree of freedom.

•Let’s list (for our example problem) the different 
quantities and their associated degrees of freedom.



ANOVA – DOF analysis
•Matrix Experiment - 9
•Grand Total SOS - 9
•Overall Mean - 1
•SOS due to mean - 1
•Total SOS - 8 ( = 9 – 1 )
•Factors - 2 each.  (why?)
•Error - 0

(error has 0 DOF as indicated by the following equation:
DOF for TSOS = ∑DOF for Factors + DOF for Error



ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA
•The mean square column is filled in by dividing the 
sum of squares by the degrees of freedom.

•The error variance can be estimated as follows:

SOS due to Error
Error Variance = ------------------------------

DOF for Error

Recall that it is denoted as 2
eσ



ANOVA
•In the interest of gaining the most information from 
a matrix experiment, all or most columns of the 
matrix should be used to study process or product 
parameters (all matrix locals should contain factor 
levels).  As a result, no degrees of freedom may be 
left to estimate error variance which is the case in 
our example.

•When this is the case, we cannot directly estimate 
the error variance.  So what do we do?



ANOVA
An approximate estimate of the error variance can 
be obtained by pooling the sum of squares 
corresponding to the bottom half of the factors 
(bottom meaning having the lowest mean squares).
Half is measure ito degrees of freedom.  So the 
pooled value should be contributed to by enough 
factors to account for half the DOF and they should 
be the least significant factors.



ANOVA
Considering our Fourier Analogy, this is similar to 
considering the least significant harmonics to be 
error and using the rest to explain the signal.

For our current example, this approach clearly 
dictates that we should use our C and D factor 
SOS’s in the computation of our Pooled Error Term.

This approach is a “rule of thumb” or heuristic 
approach.



ANOVA
So in our approach, the sum of the sum of squares 
for factors C and D is 400 and accounts for 4 
degrees of freedom.

Thus, our estimate of the error variance is 100(dB)2.



ANOVA
With some assumptions, pooling gives a biased 
estimate of the error variance.

In order to obtain a better estimate, it would be 
necessary to carry out many more experiments and 
the additional expenditure is generally not 
considered worth while.

Note:  The mean square column usually gives a 
good idea which factors to use in describing error 
and which to use in observation.



ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA-Confidence Intervals
The CI’s for factor effects are useful in judging the 
size of the change caused by changing a factor 
level compared to the error std. dev.

Recall that for our example, the error variance of 
the effect of each factor was (1/3)      .

This gives a value of (1/3)*(100) = 33.3(dB)2

2
eσ



ANOVA-Confidence Intervals
So considering that two standard deviations from 
the mean encompasses about 95% of our 
observations, our 95% confidence interval is:

Recall of course that std. dev. is sqrt of variance.

On the next slide, we will revisit the figure showing 
our factor effects and see the 2σ CI’s.

2)(5.113.332 dB=±



ANOVA
Shown only 
at starting 
level to 
avoid 
crowding.  

Similar 
intervals 
properly 
exist at all 
of the 
points on 
the plot.



ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA – Variance Ratio
The variance ration (column F) is the ratio of the 
mean square due to a factor and the error mean 
square.

A large F obviously means that the effect of that 
factor is large compared to the effect of error (error 
variance).  It also means that the factor is more 
important in influencing the observation values.



ANOVA
Values of F smaller than 1 indicate that the effecto
of the factor is smaler thatn the error of the additive 
model.

A value of around 2 means the factor effect is 
moderate, and a value of 4 or greater means that 
the factor effect is great.

Note that it is not necessarily sensible to compute F 
for the factors used in the pooling of error.



ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA
What can be inferred from the ANOVA table?

1st, it is quick and easy to determine the percentage 
of variation due to each factor as we did last time 
(recall that factor a was responsible for 64.5% of 
the variation in eta) and we discussed what this tells 
us.

2nd, The size of the factor effect can be inferred 
from the F column.  Larger F -> Larger factor effect 
compared to error variance.



ANOVA
•What is still missing from our ANOVA analysis?

–Analysis of the degrees of freedom of our various 
parameters.
–Explanation of Mean Square Column
–Estimation of Error Variance
–Explanation of “Pooled Error”
–Calculation of confidence intervals
–Computation of variance ratios (“F” column)
–Interpretation of the ANOVA table.
–Prediction and diagnosis based on ANOVA



ANOVA
With the results of our ANOVA, we can now make 
predictions about the performance of various 
experiments.  Most interestingly, we would like to 
predict performance of our system at our found 
optimum point.

The prediction calculation is carried out for our 
optimum condition on the following slide.  (note that 
I am not accounting for the fact that we say 2 equal 
sets of optimum settings).



ANOVA
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Note that since we used factors C and D as 
error, we do not include them in our prediction of 
the optimum η.  Recall that using C and D as 
error was based on heuristics.  As such, not 
including them in this calc. is too.



ANOVA
It turns out that if you do include factors like C and 
D in your optimum calculation, the result will usually 
be biased to the high side.  Therefore, when you 
actually try those settings, your observed value will 
not be as good as your predicted.

For our example, the defect count under optimum 
conditions would be:

( Recall that η = -10*log10(msdc) )



ANOVA
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As a note, it can be seen now that we used the log of the msdc to avoid the 
possibility of acquiring a negative predicted defect count.



ANOVA
As a final note on the prediction process, the 
additive model makes it easy to compute the 
predicted change in performance between two 
experiments by setting up a ∆η calculation.  

I think you can easily verify that the m’s cancel 
leaving you with differences of level means.



ANOVA
Now that we have a predicted optimum observation 
value for our experiment, we should compare that 
to our actual observed value.  (We talked about 
performing the optimum experiment in a previous 
lecture).

If the predicted value is close to the actual, then we 
can say that the additive model is sufficient to 
describe our system and visa versa.  The opposing 
case indicates that we probably have interactions 
amongst our variables.



ANOVA
So how close is close enough?

To determine this, we have to find our Variance of 
prediction error.  The error value is given by the 
difference between the predicted and observed 
optimal.

It has 2 independent components:
–That caused by estimates of m, mA1, mB1.
–That caused by repetition error in an experiment. 



ANOVA
•These two components are independent of one another and 
therefore, the variance of the prediction error is the sum of 
the variances of these to error components.

To compute the component of the variance due to the first 
term, we must find the equivalent sample size n0.  It is given 
as follows:

Where:

nA1 is replication # of A1

nB1 is replication # of B1

n is # of experiments.
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ANOVA
•The first components contribution will then be

•The second component is a function of the number 
of times that we repeat the verification experiment, 
nr (we called it the replication error). It is given by:
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ANOVA
•So our final calculation (for our experiment) is:

•You should verify that in our example, this comes 
our to a value of 80.6(dB)2.
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ANOVA
•So our corresponding 2σ confidence limits are 
±17.96 dB.  A prediction error outside these limits is 
a strong indication that the additive model was not 
appropriate and that there likely exists some factor 
interactions.

•Final note on prediction error.  The prediction error 
does not only apply to our optimum experiment.  It 
applies to any experiment we wish to try that is not 
part of our matrix experiment.
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