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Variation Operators - Mutation

• Mutation is the seemingly random 
alteration of genetic structure.  ( in biology, 
mutation is generally caused by mutagens 
such as UV radiation ).  We tend to 
consider it a random process in our 
algorithms.



Mutation on Vectors of Integers

•Could randomly select designs and 
associated variables and then:

– Alter by a random amount (according to some 
distribution).

– Randomly reassign to a new value (within 
bounds).

Same approaches used for real number 
encoding.



Mutation on Vectors of Bits

• Could use random re-assignment as in 
vectors of ints and reals.  But clearly we 
would not attempt to add a random 
amount to a bit since they can only be 1’s 
and 0’s.



Mutations on Combinations
This will likely require a combination of the 
aforementioned mutation strategies.  This 
case will likely require highly specialized 
operators (very problem dependent).



Mutations in Binary Encoding
Can be carried out in many of the 
aforementioned ways.

Can also perform random bit mutation where 
the bits of the actual design variables are 
changed according to some probability.



Mutations on Symbolic Exps.
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Mutations on Symbolic Exps.
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Mutations on Symbolic Exps.
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Mutations on Symbolic Exps.
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Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
Gaussian Mutation

*

mod

A 4

sqrt

1.45After



Selection Operator
• The selection operator serves as a filter in 

which the algorithm will determine the 
makeup of the next generation.

• It acts on the individuals of the population 
and generally considers their 
quality/fitness.



Selection Operator
• Most approaches work according to one of 

the following schemes:
– some designs are removed from 

consideration and others go on to become the 
members of the next generation

– individuals are sampled and pitted against 
new designs and “survival” is based on their 
relative fitness.



Selection Operator
• In the first case:

– Members of the population are simply 
removed and the result is a “thinning” of the 
population. (probability of removal is based on 
fitness)

– As a result of the above, each individual has a 
chance for at most 1 duplicate of itself in the 
next population.



Selection Operator
• In the second case:

– Members of the population are chosen 
(perhaps at random) to compete with each 
other in a “tournament”.  The winner gets a 
copy in the next population.  Tournaments are 
run until the next population is full.

– As a result of the above, each individual has a 
chance for many duplicates in the next 
population (could be involved in many 
tournaments).



Selection Operator
• Note that the competition doesn’t have to 

be explicit.  Consider roulette wheel 
selection.

Each design gets 
a slice of the 
wheel sized 
proportionally to 
its fitness.

Wheel is spun 
and a design is 
selected until 
next population 
is full.
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Selection Operator
•Another common approach is to divide 
each members fitness by the average 
population fitness to achieve the number 
of copies sent into the next generation.

(we will see this approach later in our 
example).



5 Basic Components
• An encoded representation of solutions to the problem.

– Ex. binary encoding, real number encoding, integer encoding, data 
structure encoding.

• A means of generating an initial population.
– Ex. random initialization, patterned initialization.

• A means of evaluating design fitness.
– Need a consistent means of determining which designs are “better” than 

others.

• Operators for producing and selecting new designs.
– Ex. selection, crossover, mutation.

• Values for the parameters of the algorithm.
– Ex. How much crossover and mutation, how big is population.



Parameters
• As previously mentioned, the parameters 

define rates, sizes, etc. pertaining to the 
algorithm.

• Appropriate values of the parameters are 
very problem dependent.

• In this section, we will look at the 3 typical 
algorithm parameters and consider their 
effects.



Population Size
• A population size must be decided upon 

before initialization occurs.

• A very large initial population may as well 
be a random search.

• A very small initial population will likely 
converge quickly (and sub-optimally).



Crossover Rate
• A high crossover is used to encourage 

good mixing of the chromosomes.  This 
encourages variation from one population 
to the next.

• A low crossover rate may unnecessarily 
slow the algorithm.

• Typical value is 75% (cross 75% of pairs)



Mutation Rate
• High mutation is a random search.

• Low mutation may prevent sufficient 
exploration.

• Typical values are 0.5% per bit in BE or 
3-5% for any given design undergoing a 
mutation.



Algorithm Workings
The next set of slides will deal with some 
information about how the algorithm works 
and exploits previously learned information 
by means of schemata.



Schemata
Schemata are templates discovered by the 
algorithm (implicitly).

These templates represent similarities that 
exist between highly fit designs.

We will consider the case of a binary string 
(binary encoding or vector of bits) so that 
each genetic locus has 2 alleles (0, 1).



Schemata
For an alphabet with cardinality k, we will 
define k+1 symbols to represent our 
schemata.

The first k symbols will be those used by the 
alphabet and the k+1th symbol will be the 
meta-symbol (meaning a symbol that 
symbolized a symbol) *.  * will serve as a 
wildcard.



Schemata
So for a set of designs with associated 
fitness values:

Design Fitness

0 1 1 0 1 169

1 1 0 0 0 576

0 1 0 0 0 64

1 0 0 1 1 361

We may notice that all designs with a 1 in 
the first locus have high fitness values.



Schemata
Thus we may say that the schema 1**** 
represents a set of good designs.

So a schema represents a subset of designs 
and can be used to broadly classify them.

We can also determine how many designs 
belong to a particular schema.



Schemata
The schema 1*011 has 2 member designs:

11011 and 10011

The schema 1*01* has 4 member designs:
10010, 10011, 11010, and 11011

In General, a schema has 2s member 
designs where s is the number of wildcards 
(*’s).



Schemata
So how many schema are there?

For our binary example, each location in a 
schema can be a 0, 1, or *.  Therefore, there 
are 3n possible combinations where n is the 
number of locations.

So for 5 bit long genomes, there are 35 or 
243 different possible schema.



Schemata
For an alphabet of cardinality k, there are 
then (k+1)n schemata where n is again the 
length of a genome.

So what?  What am I supposed to do with 
this?  I cannot possibly test for all of these 
schemata.



Schemata
The algorithm will process these schemata 
automatically.  It turns out that the number of 
schemata usefully processed each generation is 
something like n3 where n is the population size.

Some schemata will have difficulties propagating 
through the generations and others will not.  Those 
that do not and represent designs of good fitness 
will become building blocks that the algorithm uses 
to create designs.



Schemata
Which schemata will propagate well and 
which will not?

This depends a great deal on your encoding 
method and your operators.

I will present an example using our binary 
paradigm.



Schemata
When using a single point crossover, a 
schema like:

1 * * * 0

Is very likely to be disrupted while a schema 
like:

* * * 1 0

Is not.  See why?



Schemata
It is also possible for mutation to disrupt or 
destroy a schema for a design but it is not 
likely because of the low probability of 
mutation.

So highly fit, short, well placed schemata will 
propagate well and the occurrences of them 
will increase exponentially as the algorithm 
progresses.
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