
MAE 552
Heuristic Optimization

Instructor: John Eddy
Lecture #12

2/20/02
Evolutionary Algorithms

Variation Operators - Mutation

• Mutation is the seemingly random
alteration of genetic structure. (in biology,
mutation is generally caused by mutagens
such as UV radiation). We tend to
consider it a random process in our
algorithms.

Mutation on Vectors of Integers

•Could randomly select designs and
associated variables and then:

– Alter by a random amount (according to some
distribution).

– Randomly reassign to a new value (within
bounds).

Same approaches used for real number
encoding.

Mutation on Vectors of Bits

• Could use random re-assignment as in
vectors of ints and reals. But clearly we
would not attempt to add a random
amount to a bit since they can only be 1’s
and 0’s.

Mutations on Combinations
This will likely require a combination of the
aforementioned mutation strategies. This
case will likely require highly specialized
operators (very problem dependent).

Mutations in Binary Encoding
Can be carried out in many of the
aforementioned ways.

Can also perform random bit mutation where
the bits of the actual design variables are
changed according to some probability.

Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
One Node Mutation

*

mod

A 9

cos

1.45After

Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
Swap Mutation

*

sqrt mod

1.45 A 9After

Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
Growth Mutation

*

mod

+ 9

sqrt

1.45

A 11.6
After

Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
Truncation Mutation

*

9 sqrt

1.45

After

Mutations on Symbolic Exps.

*

mod

A 9

sqrt

1.45

Before
Gaussian Mutation

*

mod

A 4

sqrt

1.45After

Selection Operator
• The selection operator serves as a filter in

which the algorithm will determine the
makeup of the next generation.

• It acts on the individuals of the population
and generally considers their
quality/fitness.

Selection Operator
• Most approaches work according to one of

the following schemes:
– some designs are removed from

consideration and others go on to become the
members of the next generation

– individuals are sampled and pitted against
new designs and “survival” is based on their
relative fitness.

Selection Operator
• In the first case:

– Members of the population are simply
removed and the result is a “thinning” of the
population. (probability of removal is based on
fitness)

– As a result of the above, each individual has a
chance for at most 1 duplicate of itself in the
next population.

Selection Operator
• In the second case:

– Members of the population are chosen
(perhaps at random) to compete with each
other in a “tournament”. The winner gets a
copy in the next population. Tournaments are
run until the next population is full.

– As a result of the above, each individual has a
chance for many duplicates in the next
population (could be involved in many
tournaments).

Selection Operator
• Note that the competition doesn’t have to

be explicit. Consider roulette wheel
selection.

Each design gets
a slice of the
wheel sized
proportionally to
its fitness.

Wheel is spun
and a design is
selected until
next population
is full.

D1

D2

D3

D4

D5

Selection Operator
•Another common approach is to divide
each members fitness by the average
population fitness to achieve the number
of copies sent into the next generation.

(we will see this approach later in our
example).

5 Basic Components
• An encoded representation of solutions to the problem.

– Ex. binary encoding, real number encoding, integer encoding, data
structure encoding.

• A means of generating an initial population.
– Ex. random initialization, patterned initialization.

• A means of evaluating design fitness.
– Need a consistent means of determining which designs are “better” than

others.

• Operators for producing and selecting new designs.
– Ex. selection, crossover, mutation.

• Values for the parameters of the algorithm.
– Ex. How much crossover and mutation, how big is population.

Parameters
• As previously mentioned, the parameters

define rates, sizes, etc. pertaining to the
algorithm.

• Appropriate values of the parameters are
very problem dependent.

• In this section, we will look at the 3 typical
algorithm parameters and consider their
effects.

Population Size
• A population size must be decided upon

before initialization occurs.

• A very large initial population may as well
be a random search.

• A very small initial population will likely
converge quickly (and sub-optimally).

Crossover Rate
• A high crossover is used to encourage

good mixing of the chromosomes. This
encourages variation from one population
to the next.

• A low crossover rate may unnecessarily
slow the algorithm.

• Typical value is 75% (cross 75% of pairs)

Mutation Rate
• High mutation is a random search.

• Low mutation may prevent sufficient
exploration.

• Typical values are 0.5% per bit in BE or
3-5% for any given design undergoing a
mutation.

Algorithm Workings
The next set of slides will deal with some
information about how the algorithm works
and exploits previously learned information
by means of schemata.

Schemata
Schemata are templates discovered by the
algorithm (implicitly).

These templates represent similarities that
exist between highly fit designs.

We will consider the case of a binary string
(binary encoding or vector of bits) so that
each genetic locus has 2 alleles (0, 1).

Schemata
For an alphabet with cardinality k, we will
define k+1 symbols to represent our
schemata.

The first k symbols will be those used by the
alphabet and the k+1th symbol will be the
meta-symbol (meaning a symbol that
symbolized a symbol) *. * will serve as a
wildcard.

Schemata
So for a set of designs with associated
fitness values:

Design Fitness

0 1 1 0 1 169

1 1 0 0 0 576

0 1 0 0 0 64

1 0 0 1 1 361

We may notice that all designs with a 1 in
the first locus have high fitness values.

Schemata
Thus we may say that the schema 1****
represents a set of good designs.

So a schema represents a subset of designs
and can be used to broadly classify them.

We can also determine how many designs
belong to a particular schema.

Schemata
The schema 1*011 has 2 member designs:

11011 and 10011

The schema 1*01* has 4 member designs:
10010, 10011, 11010, and 11011

In General, a schema has 2s member
designs where s is the number of wildcards
(*’s).

Schemata
So how many schema are there?

For our binary example, each location in a
schema can be a 0, 1, or *. Therefore, there
are 3n possible combinations where n is the
number of locations.

So for 5 bit long genomes, there are 35 or
243 different possible schema.

Schemata
For an alphabet of cardinality k, there are
then (k+1)n schemata where n is again the
length of a genome.

So what? What am I supposed to do with
this? I cannot possibly test for all of these
schemata.

Schemata
The algorithm will process these schemata
automatically. It turns out that the number of
schemata usefully processed each generation is
something like n3 where n is the population size.

Some schemata will have difficulties propagating
through the generations and others will not. Those
that do not and represent designs of good fitness
will become building blocks that the algorithm uses
to create designs.

Schemata
Which schemata will propagate well and
which will not?

This depends a great deal on your encoding
method and your operators.

I will present an example using our binary
paradigm.

Schemata
When using a single point crossover, a
schema like:

1 * * * 0

Is very likely to be disrupted while a schema
like:

* * * 1 0

Is not. See why?

Schemata
It is also possible for mutation to disrupt or
destroy a schema for a design but it is not
likely because of the low probability of
mutation.

So highly fit, short, well placed schemata will
propagate well and the occurrences of them
will increase exponentially as the algorithm
progresses.

	MAE 552 Heuristic Optimization
	Variation Operators - Mutation
	Mutation on Vectors of Integers
	Mutation on Vectors of Bits
	Mutations on Combinations
	Mutations in Binary Encoding
	Mutations on Symbolic Exps.
	Mutations on Symbolic Exps.
	Mutations on Symbolic Exps.
	Mutations on Symbolic Exps.
	Mutations on Symbolic Exps.
	Selection Operator
	Selection Operator
	Selection Operator
	Selection Operator
	Selection Operator
	Selection Operator
	5 Basic Components
	Parameters
	Population Size
	Crossover Rate
	Mutation Rate
	Algorithm Workings
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata
	Schemata

