7.1 Air is flowing in a duct configured like Figure 4.19 in the text with $\theta_1 = 10$ degrees, $\theta_2 = 20$ degrees and with Mach Number of 3 in the flow approaching the corner. What is the temperature, pressure and velocity in region 3 after the second reflection?

7.3 Plot 6 points of a pressure deflection diagram for flows over a wedge with $M = 2.6$. Include some points for both a weak and strong shock.

7.2 Air is flowing through a duct with corners configured like Figure 4.23 in the text with $\theta_1 = 10$ degrees, $\theta_2 = 20$ degrees and with Mach Number of 3 in the flow approaching the corners. What are the temperatures, pressure and velocities in the regions 4 and 4'?

7.4 Derive in detail showing all steps equation 4.35 in the test, the governing equation for Prandtl-Meyer flow. In what ways is this equation restricted?
\[\theta - M - \beta \text{ @ } M_1 = 3, \theta = 10 \]
\[\beta = 27.38 \]
\[M_{1n} = M_1 \sin \beta = 1.38 \]
\[\text{Table A.2 @ } M_{1n} = 1.38 \]
\[M_{2n} = .748 \]
\[p_2/p_1 = 2.054 \]
\[T_2/T_1 = 1.242 \]
\[M_2 = M_{2n}/\sin(\beta - \theta) = 2.504 \]

\[\theta - M - \beta \text{ @ } M_2 = 2.504, \theta = 30 \]

won't reflect. properties indeterminate by 1D methods
7.2

$\theta - M - \beta$ Chart @ $M_1 = 3$, $\theta_2 = 20 \implies \beta = 37.76$

$M_{1n} = m_1 \times \sin \beta = 1.8372$

Table A.2 @ $M_{1n} = 1.8372$

$M_{n2} = .6078$, $p_2/p_1 = 3.783$, $T_2/T_1 = 1.5596$

$M_2 = \frac{M_{2n}}{\sin(\beta - \theta)} = 1.994$

$\theta - M - \beta$ Chart @ $M_1 = 3$, $\theta_3 = 10 \implies \beta = 32.24$

$M_{1n} = M_1 \times \sin \beta = 1.3798$

Table A.2 @ $M_{1n} = 1.3798$

$M_{3n} = .7484$, $p_3/p_1 = 2.0545$

$M_3 = \frac{M_{3n}}{\sin(\beta - \theta)} = 2.505$
\[\theta_2 = 20, \quad M_2 = 1.994 \]

\[
\begin{align*}
\theta_4' & \quad \beta & \quad M_{2n} = M_2 \sin \beta & \quad \frac{p_4'}{p_2} & \quad p_4' = p_1 \frac{p_4}{p_2} \frac{p_2}{p_1} & \quad \Phi = \theta_2 - \theta_4' & \quad \frac{T_4'}{T_3} & \quad M_4.
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\theta_4')</th>
<th>(\beta)</th>
<th>(M_{2n})</th>
<th>(\frac{p_4'}{p_2})</th>
<th>(p_4' = p_1 \frac{p_4}{p_2} \frac{p_2}{p_1})</th>
<th>(\Phi = \theta_2 - \theta_4')</th>
<th>(\frac{T_4'}{T_3})</th>
<th>(M_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>40.598</td>
<td>1.2963</td>
<td>1.7937</td>
<td>6.7856</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.25</td>
<td>39.71</td>
<td>1.2740</td>
<td>1.7268</td>
<td>6.549</td>
<td>9.75</td>
<td>1.1744</td>
<td>1.6257</td>
</tr>
<tr>
<td>10</td>
<td>39.435</td>
<td>1.267</td>
<td>1.7050</td>
<td>6.450</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\theta_3 = 10, \quad M_2 = 2.505 \]

\[
\begin{align*}
\theta_4 & \quad \beta & \quad M_{3n} = M_3 \sin \beta & \quad \frac{p_4}{p_3} & \quad p_4 = p_1 \frac{p_4}{p_3} \frac{p_3}{p_1} & \quad \Phi = \theta_2 - \theta_4 & \quad \frac{T_4}{T_3} & \quad M_4.
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\theta_4)</th>
<th>(\beta)</th>
<th>(M_{3n})</th>
<th>(\frac{p_4}{p_3})</th>
<th>(p_4 = p_1 \frac{p_4}{p_3} \frac{p_3}{p_1})</th>
<th>(\Phi = \theta_2 - \theta_4)</th>
<th>(\frac{T_4}{T_3})</th>
<th>(M_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>41.551</td>
<td>1.6615</td>
<td>3.0542</td>
<td>6.2745</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.75</td>
<td>42.50</td>
<td>1.6924</td>
<td>3.1748</td>
<td>6.522</td>
<td>9.75</td>
<td>1.4529</td>
<td>1.661</td>
</tr>
<tr>
<td>20</td>
<td>42.822</td>
<td>1.7050</td>
<td>3.2159</td>
<td>6.607</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\Phi = \text{angle of stream line, slip line to inlet} \]

\[\theta_4' = \theta_2 - \Phi = 20 - 9.75 = 11.25 \]

\[\theta_4 = \Phi + \theta_3 = 9.75 + 10 = 19.75 \]
\[
\frac{T_{4'}}{T_1} = \frac{T'_{4'} T_2}{T_2 T_1} = 1.1744 \times 1.5596
\]
\[
\frac{T_{4'}}{T_1} = 1.832
\]
\[
\frac{v_{4'}}{v_1} = \frac{M_{4'} \times a_{4'}}{M_1 \times a_1} = \frac{M_{4'}}{M_1} \sqrt{\frac{T_{4'}}{T_1}}
\]
\[
\frac{v_{4'}}{v_1} = \frac{1.6257}{3} \sqrt{1.832} = .7335
\]
\[
\frac{T_4}{T_1} = \frac{T_4 T_3}{T_3 T_1} = 1.4529 \times 1.2417
\]
\[
\frac{T_4}{T_1} = 1.8041
\]
\[
\frac{v_4}{v_1} = \frac{M_4 \times a_4}{M_1 \times a_1} = \frac{M_4}{M_1} \sqrt{\frac{T_4}{T_1}}
\]
\[
\frac{v_4}{v_1} = \frac{1.661}{3} \sqrt{1.8041} = .7437
\]
assume a range of θ's, $0 - \theta_{\text{max}}$

$\theta - M - \beta\, @\, M_1 =, \quad \theta = \beta_{\text{weak}} = \beta_{\text{strong}} = \theta$

Table A.2 @ $M_{1n} = \beta$

$M_{2n} =, \frac{p_2}{p_1} =$

$M_1 = 2.6$

<table>
<thead>
<tr>
<th>θ</th>
<th>β</th>
<th>M_{1n}</th>
<th>$\frac{p_2}{p_1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>46.41</td>
<td>1.1567</td>
<td>1.394</td>
</tr>
<tr>
<td>10</td>
<td>30.79</td>
<td>1.3309</td>
<td>1.900</td>
</tr>
<tr>
<td>15</td>
<td>35.81</td>
<td>1.5212</td>
<td>2.533</td>
</tr>
<tr>
<td>20</td>
<td>41.621</td>
<td>1.7269</td>
<td>3.313</td>
</tr>
<tr>
<td>25</td>
<td>48.651</td>
<td>1.952</td>
<td>4.278</td>
</tr>
<tr>
<td>30.9</td>
<td>64.19</td>
<td>2.3405</td>
<td>6.225</td>
</tr>
<tr>
<td>30</td>
<td>69.778</td>
<td>2.440</td>
<td>6.777</td>
</tr>
<tr>
<td>20</td>
<td>80.625</td>
<td>2.565</td>
<td>7.511</td>
</tr>
<tr>
<td>10</td>
<td>85.792</td>
<td>2.593</td>
<td>7.677</td>
</tr>
<tr>
<td>0</td>
<td>89.591</td>
<td>2.599</td>
<td>7.72</td>
</tr>
</tbody>
</table>

7.3

[Graph showing strong and weak shock waves with θ and $\frac{p_2}{p_1}$ axes, indicating θ_{max}.]
vector change in velocity across the wave is normal to the wave

two sides: V and $V + dV$
opposite angles: $90 - \mu - d\theta$ and $90 + \mu$

by the law of sines.

\[
\frac{V}{\sin(90 - \mu - d\theta)} = \frac{V + dV}{\sin(90 + \mu)}
\]

\[
\frac{V + dV}{V} = \frac{\sin(90 + \mu)}{\sin(90 - \mu - d\theta)}
\]
7.4

\[
\frac{V + dV}{V} = \frac{\sin(90 + \mu)}{\sin(90 - \mu - d\theta)}
\]

from trigonometric identities,

\[
1 + \frac{dV}{V} = \frac{\cos \mu}{\cos \mu \cos d\theta - \sin \mu \sin d\theta}
\]

small angle assumption, \(\sin d\theta = d\theta \), \(\cos d\theta = 1 \)

\[
1 + \frac{dV}{V} = \frac{1}{1 - d\theta \tan \mu}
\]

expand the right side as a series,

\[
1 + \frac{dV}{V} = 1 + (d\theta \tan \mu) + (d\theta \tan \mu)^2 +
\]

ignoring the higher order terms

\[
\frac{dV}{V} = d\theta \tan \mu
\]

since \(\mu = \sin^{-1} \frac{1}{M} \), \(\tan \mu = \frac{1}{\sqrt{M^2 - 1}} \)

\[
d\theta = \sqrt{M^2 - 1} \frac{dV}{V} \quad (4.35)
\]