Ideal Flows - 2

- 1. An oval consists of a horizontal uniform flow $(v_{\infty} = 10)$ of air over a source $(\lambda = 15 \text{ at } x = -2, y = 0)$ and a sink $(\lambda = -15 \text{ at } x = 2, y = 0)$. Quantities in meters.
 - a) Find the location of the stagnation point(s).
 - b) Find the maximum thickness.
 - c) Verify these results using the Ideal Flow Machine at www.engapplets.vt.edu
 - d) Find the velocity at the top point $(x = 0, y = y_{max})$.
 - e) If $p_{\infty} = 100,000 Pa$, what is the pressure at the top point
- 2. Use the Ideal Flow Machine to locate the stagnation points in the following flows.
 - a) Uniform flow V∞=1,
 c.c.w vortex of strength 4.0 located a distance of 1.0 above a wall.
 - b) Uniform flow $v_{\infty=1}$, c.w vortex of strength 4.0 located a distance of 1.0 above a wall.