Dimensional Analysis

The study of the physical dimensions (force, length, time and temperature) of the variables and properties describing fluids and fluid flows.

Important uses: Consolidate data from an experiment
Formulating empirical relations from data
Interpreting results from model studies

Physical Dimensions

Physical quantities have dimensions formulated in terms of four basic units: F = force, L = length, T = time, and $\Theta = temperature$.

Two systems are interchangeable since F = Ma.

Basic dimensions of some quantities:

velocity -
$$m/s$$
 - L/T
acceleration - m/s^2 - L/T^2
mass - kg - M - FT^2/L
density - kg/m^3 - M/L^3 - FT^2/L^4
momentum - $kg \cdot m/s$ - ML/T - FT
stress - N/m^2 - F/L^2
work - $N \cdot m$ - FL
viscosity - $N \cdot s/m^2$ - FT/L^2
specific heat - cal/gr^oK - $N \cdot m/gr^oK$
- $Fl/M\Theta$ - $L^2/T^2\Theta$

Dimensional homogeneity: The terms in a relation governing a physical phenomena must have the same dimensions.

Example: Navier-Stokes equations

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\rho \frac{Du}{Dt} \sim \rho \frac{V}{T} \sim \frac{FT^2}{L^4} \frac{L/T}{T} \sim \frac{F}{L^3}$$

$$\frac{\partial p}{\partial x} \sim \frac{F/L^2}{L} \sim \frac{F}{L^3}$$

$$\mu \frac{\partial^2 u}{\partial x^2} \sim \mu \frac{V}{L^2} \sim \frac{FT}{L^2} \frac{L/T}{L^2} \sim \frac{F}{L^3}$$

Each term has dimensions of force per unit volume.

Dimensional Analysis and Homogeneity:

The essence of dimensional analysis is the arrangement of a collection of variables, which describe a given flow phenomena, into dimensionless groups.

Example: From Bernoulli's equation $(p_0 = p + \rho V^2/2)$, p and ρV^2 must have the same dimensions and, thus, $p/\rho V^2 - (F/L^2)/(M/L^3)(L^2/T^2) - (M/LT^2)/(M/LT^2)$ is a dimensionless group.

Exact solution to the flow equations for a particular problem can always be arranged in terms of dimensionless groups. For the parallel plate channel

$$\dot{q} = \frac{h^3 w}{12\mu} \frac{p_1 - p_2}{L}$$

$$\frac{p_1 - p_2}{\rho (\dot{q} / hw)^2} = 12 \frac{L}{h} \frac{\mu}{\rho (\dot{q} / hw)h}$$

$$\dot{q} / hw = \overline{u}$$

$$\frac{p_1 - p_2}{\rho \overline{u}^2} = 12 \frac{L}{h} \frac{\mu}{\rho \overline{u} h} = \frac{L}{h} \frac{12}{Re}$$

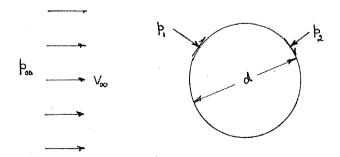
If the solution to a given problem is not known, then we need a procedure for determining the dimensionless groups.

Problem: Determine a total quantity such as a resultant force, power, heat transfer, etc.

Quantity depends on other variables independent variables. Determine these independent variables:

- 1) fluid properties ~ density, viscosity, etc.
- 2) geometry ~ length, diameter, etc.
- 3) boundary conditions ~ vehicle speed, inlet conditions

Example: Drag force on a sphere in a flow field of large extent



Flow Over a Sphere

The drag force F_D depends on the density ρ (fluid property, inertia) viscosity μ (fluid property, friction) diameter d (geometry) velocity V_{∞} (upstream condition, inertia) pressure p_{∞} (upstream condition, force)

$$F_D = f(\rho, \mu, d, V_{\infty}, p_{\infty})$$

For this relation to satisfy dimensional homogeneity $F_D = f_1(force_1, force_2, ----)$

Variables ρ, μ, p_{∞} involve forces as follows:

$$\rho \sim \frac{M}{L^3} \sim \frac{FT^2}{L^4} \sim \frac{F}{V^2 d^2} \quad \text{which gives } F_\rho = \rho V^2 d^2$$

$$\mu = \frac{FT}{L^2} \sim \frac{F}{Vd} \quad \text{which gives } F_\mu = \mu V d$$

$$p_\infty = \frac{F}{L^2} \quad \text{which gives } F_p = p_\infty L^2 = p_\infty d^2$$

Dimensionally compatible relation

$$F_D = f_1(F_\rho, F_\mu, F_p) = f_1(\rho V^2 d^2, \mu V d, p_\infty d^2)$$

To form dimensionless groups divide by one of the force quantities = $F_{\rho} = \rho V^2 d^2$ = main contributor to the drag

$$\frac{F_D}{\rho V^2 d^2} = \frac{f_1(\rho V^2 d^2, \mu V d, p_\infty d^2)}{\rho V^2 d^2}$$

$$\frac{F_D}{\rho V^2 d^2} = f_1(\frac{\rho V^2 d^2}{\rho V^2 d^2}, \frac{\mu V d}{\rho V^2 d^2}, \frac{p_\infty}{\rho V^2 d^2}) = f_2(\frac{\mu}{\rho V d}, \frac{p_\infty}{\rho V^2})$$

$$\frac{F_D}{\rho V^2 d^2} = f_3(\frac{1}{\text{Re}}, \frac{p_\infty}{\rho V^2}) = f_4(\text{Re}, \frac{p_\infty}{\rho V^2})$$

Drag coefficient

Dimensional analysis gives dimensionless groups

Does not give information on the functional relationship or
about the physics of the flow processes.

Far field pressure p_{∞} does not affect the drag force.

The drag relation

$$C_D = f(\text{Re})$$
 $C_D = F_D/(\rho V^2 A/2) = \text{drag coefficient.}$

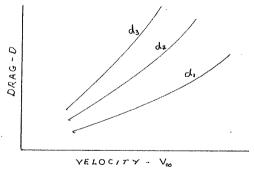
Factor of $\frac{1}{2}$ is added because the dynamic pressure in Bernoulli's equation is $\frac{1}{2}\rho V^2$.

The quantity d^2 is replaced by $A = \pi d^2 / 4$, the projected area of the sphere.

$$C_D = f(Re) =$$
one line on a graph

For $F_D = f(\rho, \mu, d, V_{\infty})$ there are four independent variables

Could plot F_D versus velocity V for various curves of diameter d for given values of the density ρ and viscosity μ which would represent different fluids or even the same fluid at different temperatures.

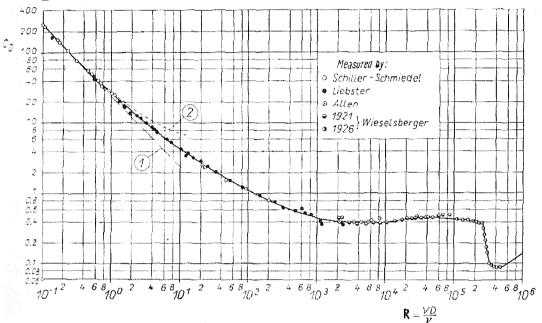


Drag on a Sphere for a Given Fluid (ρ, μ)

Requires many pages to present the data for this relatively simple flow situation.

Drag coefficient

Fortunately, only one curve is required with dimensionless variables for a particular geometric shape such as the sphere where $C_D = f(Re)$



Plotted with data obtained for different velocities, different diameters, and different fluids. Same curve when the drag coefficient is plotted against Reynolds number.

For instance, a 4 cm sphere moving in air at a velocity of V = 75m/s and in water at a speed of V = 5m/s have approximately the same Reynolds number of

$$\operatorname{Re}_{air} = \frac{1.20(75)(0.04)}{1.80x10^{-5}} \cong \operatorname{Re}_{water} = \frac{998(5)(0.04)}{1.00x10^{-3}} \cong 2.0x10^{5}.$$

They both have the drag coefficient of $C_D = 0.4$. The drag force, $F_D = C_D \rho V^2 A/2$, in each fluid is

Air:
$$F_D = (0.4) \frac{1}{2} (1.2)(75)^2 (1.26x10^{-3}) = 1.70N$$

Water:
$$F_D = (0.4) \frac{1}{2} (998)(5)^2 (1.26x10^{-3}) = 6.29N$$