Dimensional Analysis

The study of the physical dimensions (force, length, time and
temperature) of the variables and properties describing fluids
and fluid flows.

Important uses: Consolidate data from an experiment
Formulating empirical relations from data
Interpreting results from model studies

Physical Dimensions

Physical quantities have dimensions formulated in terms of
four basic units: F = force, L. = length, T = time, and
e = temperature.

Could also use the M, L, T, e system where M is the mass.
Two systems are interchangeable since F = Ma.

Basic dimensions of some quantities:
velocity - m/s - L/T
acceleration - m/s% - L/T?
mass - kg- M - FT?/L
density - kg/m® - M/ - FT?/L*
momentum - kg-m/s- ML/T - FT
stress - N/m? - F/I?
work - N-m - FL
viscosity - N-s/m? - FT/I?
specific heat - cal/ gr°K- N -m/ gr’K

- FI/MO - I?/T?®




Dimensional homogeneity: The terms in a relation governing
a physical phenomena must have the same dimensions.

Example: Navier-Stokes equations
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Each term has dimensions of force per unit volume.

Dimensional Analysis and Homogeneity:

The essence of dimensional analysis is the arrangement of a
collection of variables, which describe a given flow
phenomena, into dimensionless groups.

Example: From Bernoulli’s equation ( py = p+ pV'? /2),
p and p¥? must have the same dimensions and, thus,

pl pVi-(FIIHMIPYL?IT?) - (M/LTH /(M LT?)
is a dimensionless group.




Exact solution to the flow equations for a particular problem
can always be arranged in terms of dimensionless groups. For
the parallel plate channel
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If the solution to a given problem is not known, then we need
a procedure for determining the dimensionless groups.

Problem: Determine a total quantity such as a resultant force,

power, heat transfer, etc.
Quantity depends on other variables independent variables.
Determine these independent variables:

1) fluid properties ~ density, viscosity, etc.

2) geometry ~ length, diameter, etc.

3) boundary conditions ~ vehicle speed, inlet conditions
Example: Drag force on a sphere in a flow field of large extent
h b
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Flow Over a Sphere




The drag force Fp depends on the

density p (fluid property, inertia)
viscosity u (fluid property, friction)
diameter d (geometry)

velocity V,, (upstream condition, inertia)
pressure p,, (upstream condition, force)

:f(pDILl’d’VOO9p00)

For this relation to satisfy dimensional homogeneity

Fp = fi(forcey, forcey ,— ——)

Variables p, u, p,, involve forces as follows:
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L—Z ~ —V% which gives F,, = uVd
F . . 2
5 which gives F, = p,L

Dimensionally compatible relation

Fp= fi(Fp. Fyu Fp) = fi(pV2d*, yVd, pd®)
To form dimensionless groups divide by one of the force
quantities= F, = pV*d* = main contributor to the drag
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Drag coefficient

Dimensional analysis gives dimensionless groups

Does not give information on the functional relationship or
about the physics of the flow processes.

Far field pressure p, does not affect the drag force.

The drag relation
Cp=f(Re) Cp=Fpl(pV?A4/2) = drag coefficient.

Factor of /2 is added because the dynamic pressure in
Bernoulli’s equation is ¥ pV' 2.

The quantity d? is replaced by 4 =zd? /4, the projected area
of the sphere. |

Cp = f(Re) = one line on a graph
For Fp=f(p,u,d,V,) there are four independent variables

Could plotF, versus velocity V for various curves of
diameter d for given values of the density p and viscosity u
which would represent different fluids or even the same fluid
at different temperatures.
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Drag on a Sphere for a Given Fluid ( o, 1)

Requires many pages‘ to present the data for this relatively
simple flow situation.




Drag coefficient

F ortuhately, only one curve is required with dimensionless
variables for a particular geometric shape such as the sphere
where Cp = f (Re)
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Plotted with data obtained for different velocities, different
diameters, and different fluids. Same curve when the drag
coefficient is plotted against Reynolds number.

For instance, a 4 cm sphere moving in air at a velocity of
V' =75m/s and in water at a speed of V =5m/s have

approximately the same Reynolds number of
Re . = 1:20075)0.04) o _998(5)(0.04)

o 1.80x107 e 1.00x107
They both have the drag coefficient of C;, =0.4. The drag

force, Fp, = CppV?A4/2, in each fluid is
Air:  Fp :(0.4)5(1.2)(75) 2(1.26x1073) =1.70N

= 2.0x10°.

Water: Fj, = (0.4)—;—(998)(5)2(1.26x10_3) = 6.29N




