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1 DIGITAL VERSUS ANALOG: INSTRU-
MENTATION AND PROCESSING

The design of any data acquisition and processing system eventually involves
a decision as to whether the data collected will ultimately be analyzed by
analog or digital techniques. Instrumentation for measurement systems can
be broadly classified as analog, digital or hybrid systems. Hybrid systems
incorporate both analog and digital devices and/or signal processing tech-
niques in an effort to combine the more desirable features inherent in each.
Signals that vary in a continuous manner and can assume an infinity of val-
ues in any given range are called analog signals. Devices which produce or
directly process such signals are called analog devices. In contrast, signals
or data which vary in discrete steps and can therefore take on only a finite
number of different values in a given range are known as digital signals (or
digital data). Thus, devices which produce such signals or are used to per-
form desired calculations by numerical operations are called digital devices
or digital instruments. Some devices are inherently digital (e.g., switches
and most types of mechanical or electronic counters), while others such as
ordinary mercury-in-glass thermometers, strain gages, D’Arsonval voltmeters
are analog in nature. However, in many applications the instrumentation for
a particular measurement system can be implemented using devices which
are analog, digital or both. In general, digital instrumentation and data
processing techniques can offer higher accuracy and analysis speed than is
available through analog processing techniques alone. It is also very difficult
to design and build analog electronic equipment which is immune to the large
number of interference factors caused by ambient temperature and other en-
vironmental condition variations (e.g., electrical and electromagnetic noise,
component-aging, etc.) that tend to degrade the performance and limit the
accuracy of such systems to typically 0.5 - 1.0% (equivalent to approximately
7 bits). While the early digital instruments and measurement systems offered
higher accuracy than their analog counterparts, they were also much more ex-
pensive and difficult to operate, thus limiting their use to specialists in large
research laboratories. Advances in integrated circuit technology in the 1960’s
and early 1970’s paved the way for the extensive use of digital instrumenta-
tion, signal processing, and digital control because of increased functional-
ity, ease of use, and frequent price reductions due to competition and high
manufacturing yields. Undoubtedly the two most important contributing



factors for the widespread use of digital data acquisition and processing sys-
tems were the availability of algorithms for the fast computation of discrete
Fourier transformations on a digital computer (FFT routines) and low-cost
general purpose digital computers, first brought about by the mini-computer
in the mid and late 1960’s and then by the invention and rapid development
of the MOS microprocessor/microcomputer in the early 1970’s. With the low
cost of microprocessor-based systems and the advent of dedicated digital sig-
nal processing (DSP) chips, analog signal processors and hard-wired digital
logic instrumentation systems of the late 1960’s and early 1970’s genre are all
but gone. The newer systems are programmed to perform more functions,
give results with higher accuracy and sell at lower prices. Although logic
functions implemented with software or firmware and executed by a micro-
processor are substaintially slower than the hard-wired counterpart, partly
due to the different semi-conductor technologies involved, the speed is more
than adequate in all but the most time-critical high-speed control applica-
tions. Digital systems designed with microprocessors are more versatile than
hard-wired logic systems since the logic functions can be easily altered by
changing the software being executed. Such changes can be accomplished
by firmware (Read-Only-Memory or ROM) replacement for microprocessor-
based systems whereas new circuits would have to be designed and built
to modify hard-wired digital processing equipment. As more powerful and
faster microprocessors are being developed, new applications in high-speed
digital data acquisition and processing systems are being found. Despite
the above-mentioned advantages of digital instrumentation and data analy-
sis techniques, data presentation to human observers using analog displays
are far superior to digital (numerical) displays. For example, it is much easier
to visually comprehend the pertinent characteristics or to extract salient fea-
tures of a time history of some signal (i.e., its waveform) on an oscilloscope
or a graphic display than it is to comphrend the equivalent numerical time
history of the same signal on a numerical readout device. Therefore, if the
data has been processed digitally, a means of converting the results to an
analog form for display purposes is very desirable. In control applications,
it is often necessary to convert the digital information to an analog form for
use as inputs. This is accomplished by digital-to-analog (D/A) converters.



1.1 DATA ACQUISITION

The applications of data acquisition systems can be roughly organized into
three categories:

e Measurement - In a measurement application the process model is not
known. In fact, the quantities being measured may not be well un-
derstood. Thus, measurement is the gathering of sufficient data in an
attempt to construct a model of the unknown.

e Testing and Calibration - A testing or calibration approach acquisition
represents a situation where a device is being checked against its design
standards or measurements of certain parameters are made to establish
the values of other calibration parameters. Variables to be measured
and requirements for accuracy and precision have been established ear-
lier and are known prior to the tests and/or calibrations.

e Control - In a control application, the system initiates a series of ac-
tions, measures them, and takes corrective action if the desired results
are not, achieved.

1.1.1 General Considerations in Data Acquisition System Selec-
tion

In selecting an optimum data acquisition system perhaps the most relevant
question that needs to be answered is: ’What sort of information is ulti-
mately going to be extracted from the data acquired?’ or equivalently, "What
processing functions are going to be applied to the data?” These questions
will be addressed in detail later in the text. Depending on the application,
data acquisition systems can range from a simple low-speed data logger to
systems which include simultaneous multichannel high-speed digitizing, real-
time signal analysis and graphic displays that are controlled by dedicated
fast computers. Some important points that need to be considered are:

e Overall Features and Capabilities - The selection process can be aided
by providing answers to the following series of questions:

1. How many channels are required for the proposed work?

2. Can the number of channels be easily increased? If so, how will
such expansions affect other system performance specifications
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such as acquisition speed, power supply capability, portability,
ete.?

3. What types of transducers will be used and what are their out-
put ranges, output impedances, signal conditioning requirements,
etc.?

4. What peripherals or options (if any) will be required to implement
a complete, operational data acquisition system with the desired
capabilities?

5. What performance boosting options such as enhanced graphics or
floating-point processors might be desirable?

e Accuracy - An analysis of the application and the desired accuracy
of the final result will reveal whether transducers, signal condition-
ers, A/D and D/A converters which may only be accurate to within a
few percent are acceptable or whether state-of-the-art instrumentation
modules must be used. Most requirements typically fall somewhere
between the two extremes mentioned above. In others, a compromise
between speed and accuracy must be made due to limitations in the
present state-of-the-art. The compromise that must be made for high
accuracy is the extra cost of the system components, and very often it
comes at a reduction in the maximum conversion speed of the available
A/D converters. High absolute accuracy (with calibrations traceable
to the National Bureau of Standards) may be a prime concern for some
applications while in others systems exhibiting only high relative accu-
racy (i.e., high precision) may be needed. In either case, temperature
and long-term stability of the instrumentation system could be an im-
portant consideration.

e Acquisition Speed - The key to optimal acquisition of data which can
be defined as technically correct for the data processing anticipated and
the most economic in terms of data storage and processing time often
lies in the proper selection of the acquisition or the sample rate. The
optimal sampling rate will be discussed in detail later in this section.

e Data Storage Compatibility - Although many acquisition and process-
ing systems can operate in a stand-alone mode, the complexity of cer-
tain data analysis procedures such as computation of discrete Fourier
transforms with a large number of data points sometimes requires that



the data be transported and analyzed on a more powerful computer
system. On these occasions, it is important to ensure that the method
(usually disks or network) used for transferring the data from one
system to another be compatible, both with respect to the physical
medium and to the format of the data created by the user or the oper-
ating system software. With the increasing use of computer networking,
the problem of data transfer media compatibility has been partially al-
leviated because collected data can be transferred between computer
systems through the network without using a physical transfer medium.
One must still ascertain that the internal or binary representation of
the data is compatible on both computers.

e System Portability - When data acquisition and control systems are
required in the field, electrical generators or battery powered invert-
ers can provide an AC power source. However, in many applications,
lightweight, battery-powered computers and data acquisition systems
can be used.

e Total System and Operating Costs - Depending on the technical re-
quirements and system specifications, data acquisition and control sys-
tems can cost from a few hundred to several hundred thousand dollars
or more to purchase. Besides the initial investment, other costs, di-
rect and indirect, involved in the operation and maintenance of the
system and especially in programming it should be considered as well.
For highly specialized applications, system reliability and the level of
technical support available could also play an important role in the
selection of a data acquisition system.

1.1.2  General Considerations in Analog to Digital Conversion

An Analog-to-Digital converter provides a series of numbers, each of which
corresponds to the weighted integral of the analog signal over some time
period, Ay, called the ’aperture’ which is less than or equal to the sampling
period A. Several examples are shown in Figure 1. Thus if u(t) is the signal
and u, is the digital sample,

un = (/8) [ ult)dt+ )
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Figure 1: A/D Converter output corresponds to shaded area.

1 is the quantization noise discussed below.
If Ay/A is much less than unity, as is often the case, a convenient con-
tinuous approximation to the sampled signal is

uo(t) = Ad(t —nA)u(t);n=1,2,3,... (2)

where the § represents the impulse function. It is easy to see that the time
average of u,(t) is exactly average of the numbers generated by the A/D, i.e.

Uy = (1/T) /0 o)t = (1/N)SN_un (3)

since the number of samples N is equal to 7'/A.

Although there are literally dozens of ADC architectures known and in
use (see Table 1 for some representative types), two types represent over
90% of all ADC’s in the market. They are: 1) the shift-programmed succes-
sive approximation ADC for high-speed applications, and 2) the dual-slope
integrating ADC for low speed, low cost applications. The only inherent ad-
vantage of successive-approximation ADC’s is speed. In all other respects,
including cost and reliability, the integrating ADC is most likely to be su-
perior. In recent years, the desirable characteristics of the integrating ADC
have led to the development of multi-slope versions that extend its applica-
tions into the moderate speed range without major compromises.

1.1.3 Quantization Errors

Quantization noise arises from the approximation of a continuous signal by a
finite set of numbers. In an ideal ADC, the quantizing error is the difference
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| Type of A/D Converter

‘ Application

Shift-Programmed Successive
Approximation

General Purpose, High-speed

Dual-slope Integrating

Low Cost, Low Speed

Multi-slope Integrating

Moderate Speed

Parallel-Threshold (Flash)

Highest Possible Speed

Iterative ADC Extremely High Speed,

Less Expensive than Parrallel

Table 1: Representative types of Analog-to-Digital Converters

between the value of the analog input and the digital output due to the finite
resolution of the ADC. Figure 2 shows the approximation of a simple ramp
signal by a simple three-bit A/D converter. The quantization error (denoted
as u above) acts as a noise and is introduced by the sampling process.

There are a number of different models which can be chosen to compute
the effect of the quantization noise on the statistics of the signal. In some
cases, as for the ramp shown above and for periodic signals, the quantization
noise is periodic. For many random signals a better approximation to the
actual noise is obtained by assuming all values of u between two adjacent
levels to be equally probable. For this case the mean square noise is s?/12,
where s is the resolution of the A/D, and the noise spectrum is flat with
respect to the sampling frequency.

The experimenter must provide enough gain to insure that the mean
square value of his signal and its spectral levels are sufficiently above the
quantization noise. Sometimes it is necessary to boost the spectral level
of the analog signal before digitization by some form of prewhitening (eg.,
differentiation) to insure that interesting portions of the signal spectrum are
not buried in the quantization noise. Alternately, a higher resolution A/D
converter can be used to reduce the quantization noise to acceptable levels.

1.1.4 Clipping Errors

There exist a wide variety of ways in which an A/D converter can be con-
figured. Important considerations include the input voltage range and po-
larity (unipolar/bipolar) required to generate the full scale output code, and
whether the input lines are to be differential or single-ended. Regardless of
the configuration, clipping errors can arise from the fact that the A/D con-
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Figure 3: a) Measured mean square will be too low, even though most of the
probability density is in the data window. b) Input signal is properly scaled
for measurement of mean square. c¢) Gain and D.C. offset are large enough
that clipping will substantially affect all moments, including the mean.

verter has a finite range. In Figure 2 the range is [0, R] and the sampled
signal is shown to be clipped at those values.

Clipping can substantially affect the measurement of averaged moments.
The higher the moment, the greater the possibility of error. This can be
illustrated as follows: If B(u) is the probability density function of the signal
u(t), then the n* moment of u, say u™ , is given by

u” = /O:o u" B(u)du (4)

But the value obtained from the sampled signal is only

ur = " u" B(u)du (5)

meas
Az

where A; and A, represent the upper and lower clipping levels. The higher
the value of n, the more the tails of B(u) are weighted. Since it is the tails
of the probability density which are clipped, the more the tails are weighted,
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the greater the error. Figure 3 (a) illustrates this problem. Since the areas
under the curves shown correspond to the first and second moments, it is
clear that the latter will be seriously in error while the same clipping will
have only a relatively small effect on the mean. Higher moments will be even
more seriously affected than the second.

Since the clipping levels of the A/D converter are often fixed, it is usually
desirable to precondition the analog signal before digitization to minimize the
errors for the particular moment being measured. This can be accomplished
by a judicious application of D.C. offset and gain. Figure 3 (b) illustrates a
situation where the gain has been reduced to provide an improved estimate
of the second moment at the expense of increased quantization noise. Note,
however, that the estimate of the lower moments could be contaminated
unnecessarily by the quantization noise. Figure 3 (c) illustrates the necessity
for offsetting the mean to avoid the bias which can be introduced by clipping.

It is often not possible to optimize the A/D system for measuring all
statistical quantities to a sufficient degree of accuracy from a single digitized
record. Since it is impossible to correct for errors unless the answers are
known in advance (in which case measurement would be unnecessary), the
experimenter must often digitize the signal on several channels, each channel
having the appropriate preconditioning for the statistical quantity desired.

1.1.5 The Sampling Rate

Table 2 shows typical values of A/D conversion rates and how these rates
depend on the accuracy required. Since the requirements for high speed, high
accuracy, and low cost are mutually exclusive, the sampling rate/accuracy
trade-off can be very important in the selection of an A/D converter. Like
the choices outlined above for quantization and clipping problems, the correct
or optimal sampling rate is very much a function of the particular experi-
ment and of the type of processing that will be carried out on the sampled
data. If only probability analysis (i.e., mean values, moments, or histograms)
are desired, the optimal sampling rate is determined by the need to have a
sufficient number of statistically independent data points over a sufficiently
long time interval to insure statistical convergence. Thus the problem is pri-
marily ‘how slowly’ (as opposed to ‘how rapidly’) the data must be taken
for a specified period (set by statistical convergence criteria) to insure that
adequate storage is available and to minimize computational time. On the
other hand, if spectral analysis or time series reconstruction is to be carried
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Resolution | Typical Conversion
(Bits) Speed (ps)
8 5
10 2
12 )
14 8
15 10
16 12

Table 2: ADC Resolution versus Typical Conversion Speed

out with the data, both minimum sampling rate and minimum record length
criteria must be met. These conflicting criteria are usually most efficiently
resolved by digitizing at two or more different rates when both time series
and statistical information are desired.

1.1.6 Probability Analysis

The most important factor determining the optimal sampling rate for prob-
ability analysis is the requirement to have enough statistically independent
samples to insure statistical convergence. Convergence (or accuracy) can be
measured by the variability which is defined as the ratio of the standard de-
viation of the estimate for the statistical quantity to the true value of that
quantity. For the mean value, an estimate based on N statistically indepen-
dent samples has variability

2 var{Uy} _ 1 var{u}

where Uy is the estimate for the mean value, @ is the true mean value, and
varw is the true variance of the fluctuating signal. Thus the percent error of
the measurement depends on the variance of the phenomenon and the inverse
square root of the number of independent samples.

The N samples in equation 6 must be statistically independent. In gen-
eral, samples taken in an arbitrary manner from a continuous process will
not be statistically independent, but will be correlated. The time over which
a signal is correlated with itself can be measured by an appropriately defined
integral scale. It can be shown that samples separated by two or more inte-
gral scales affect convergence as though they were statistically independent.
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Therefore, if T is the integral scale and A is the time between samples, the
effective number of independent samples is

NA/(2Y) , A <2
= { Ve LSS 1)

Thus if the sampling rate is faster than one sample every two integral
scales (A < 27), the additional samples contribute nothing to convergence
and only increase the memory and data storage requirements. On the other
hand, if the sampling rate is slower than one sample every two integral scales,
all samples are effectively independent, but the total length of time required
to achieve a given accuracy is longer. The optimal sampling rate is clearly
equal to one sample every two integral scales. This rate will always be lower
than the rate required for time series analysis (see below), although the total
length of record required will be similar. Thus, if only probability analysis
is required, not only can there be a considerable savings in data storage
requirements, but the A/D hardware complexity is reduced since the A/D
conversion rate requirements are much less.

1.1.7 Time Series Analysis

An entirely different set of sampling constraints applies if spectral analysis
or time reconstruction of the signals is to be carried out. The basic problem
is that of spectral 'folding’ or ’aliasing’, which arises from the fact that the
Fourier transform of a digitally sampled signal is a periodic version of the
Fourier transform of the original signal. In brief, the transform of the original
signal is repeated at intervals corresponding to the rate at which the data are
sampled. Thus if u(f) is the Fourier transform of u(t), the Fourier transform
of the digitized signal is

uo(f) = BXulf —n/A) (8)

This is illustrated in Figure 4.

If all signals were bandlimited (as in Figure 4 (a) & (b)) to frequencies
less than half the sampling rate, problems would never arise. That serious
problems can arise is illustrated in Figure 4 (d) where the highest frequency
of the signal is greater than half the sampling rate. The spectra are folded
into each other so that it is impossible to determine the original spectrum.
If folding occurs, the data are said to be aliased. It is impossible to recover
time series information once it is lost due to aliasing.
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Figure 4: a) Transform of input analog signal b) Sample rate greater than
twice the highest frequency. c¢) Sample rate equal to twice the highest fre-
quency. d) Sample rate less than twice the highest frequency. Original trans-
form no longer recoverable.
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Figure 5: Aliasing of a 4 Hz. sine wave to a 1 Hz. sine wave by a 5 Hz.
sampling rate.

15



The folding frequency, which is half the sampling rate, is referred to as
the Nyquist frequency, thus fy = 1/2A. Aliasing can be avoided only if the
Nyquist frequency is greater than any frequency present in the signal, the so-
called Nyquist criterion. Figure 5 illustrates what happens when a sine wave
is sampled at something less than twice its frequency. Instead of appearing
at the proper frequency, say f,, the peak is aliased to the frequency 2fy — f,
which corresponds to the negative side of the first repeated version of the
Fourier Transform of the original signal.

The phenomenon of aliasing does not occur if the rate at which the signal
is sampled is at least twice the highest frequency. In fact, all of the infor-
mation present in the original signal is also present in the digitized signal
(but only if the record length is infinite!). This fact is the essence of the
Shannon Sampling Theorem which states that the original time series can be
reconstructed if the Nyquist criterion is satisfied. A corollary of this result is
the fact that once a signal has been sampled in a manner which introduces
aliasing, the original time series can not be recovered and the spectral infor-
mation is aliased forever, regardless of how much digital processing is carried
out.

It is not always convenient to sample at rates higher than twice the highest
frequency because of the need to have sufficiently long records to insure that
the lowest frequencies are captured. Also, in some situations the highest
frequencies are difficult to determine in advance, or may be uninteresting. In
such situations, it is necessary to precondition the analog signal by analog
low-pass filtering prior to sampling. Since no analog filter completely removes
the high frequencies, the signal must be digitally sampled at a rate higher
than twice the cutoff frequency of the filter, the exact value being determined
by the roll-off of the analog filter and the signal itself.

As a final note it should be pointed out that aliasing does not affect
the probability measures of a signal, only its spectral character. Therefore
the Nyquist criterion should not be applied if only probability measures are
desired since the only effect will be to greatly increase the amount of data
which must be stored with no improvement in statistical accuracy.

1.1.8 Simultaneous Sample and Hold

Almost all A/D converters employ a sample and hold circuit to latch the
voltage which is to be converted. The sample-and-hold amplifier is a cir-
cuit that can be digitally commanded to operate in two sequential modes:
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1) The sample mode, and 2) the hold mode. Ideally, the output is an ex-
act reproduction of the input in the sample mode. In the hold mode, the
output is ‘frozen’ and maintained without decay or drift, regardless of the
length of time or the amount of external influences. To reduce hardware
cost and complexity the various analog inputs are often multiplexed into a
single sample-and-hold amplifier at a rate determined by the user and/or the
device clock. (A multiplexer is a circuit designed to connect one of a number
of input signal paths (‘channel’) to an output load, switching from channel
to channel in an arbitrary, consecutive, or changing sequence, in accordance
with a digitally coded ‘channel address’ instruction from the system program
control source. Most MUX modules contain internal decoding circuitry to
convert the binary address input to one-in-eight, one-in-sixteen, or whatever
else is required to switch on one channel at a time.) The rate at which each
channel of data is digitized is the rate at which the A/D converter is oper-
ating divided by the number of channels multiplexed into it. Thus, if the
number of channels is high, the required conversion rate can be quite high
to achieve even modest Nyquist frequencies on the individual channels.

A consequence of the multiplexing of analog data in the manner described
above is that all channels of data are not digitized simultaneously, but rather
in sequence. These time delays (or phase lags) between channels can have a
serious effect on both probability and time series analyses. For example, if
the sample interval is A, the time between the conversion of channel m and
channel n is (m—n)A. Thus the cross-covariance between the two channels is
not u2, but rather u(t)u(t + (m — n)A) which can be substantially different
depending on the nature of the cross-correlation u(t)u(t + 7) and the lag time
(m — n)A. As is shown below, the correct cross-moments can be found by
first carrying out a spectral analysis of the data.

This phase lag also has an effect on spectral analysis. The cross spectrum
can be shown to be given by

Smeas(f) = Sigue(f)exp(—i(m — n)2r fA) (9)

From equation 9 it is clear that the correct cross-spectrum can be ob-
tained from the measured cross-spectrum by simply multiplying the latter
by the complex conjugate of the frequency dependent exponential. Since
the cross-correlation is the inverse Fourier transform of the cross-spectrum,
the true cross correlation can be obtained by making the phase correction
before transforming. If this is done then the true cross moments can be eval-
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uated, either from the cross-correlation at zero-lag or from the integral of the
cross-spectrum.

An alternative to these correction procedures is to avoid the problem al-
together. One method is to introduce multiple sample-and-hold amplifiers
before the multiplexer so that all channels are latched simultaneously before
being read sequentially by the A/D. Another is to simply provide each chan-
nel with its own A /D converter and synchronize their operation. When used
in conjunction with dedicated data buffers, extremely high acquisition rates
can be achieved in this manner since no multiplexing is required.

1.1.9 Digital-to-Analog Conversion

Sometimes it is desirable to reconstruct an analog signal from digital samples
using a D/A converter. Digital-to-analog converters are devices that accept
digital signals (coded sets of bits) at their input terminals, and generate an
analog current or voltage output that is exactly representative of the input
code, if each bit were perfectly weighted. Figure 2 shows the theoretical
transfer function for the three least-significant bits of a binary input code.
Note that these three bits yield all the output values for the eight possible
binary input codes from 000 to 111. The transfer function for an 8-bit D/A
converter would have 256 steps and a 12-bit converter would have 4, 096.

An analog signal is best generated by using an approximation to the
Whittaker interpolation formula on the digital data before D/A conversion.
This formula is given by

w(t) = sin(rt/A)/(rt/A) (10)

Other digital low-pass filters can also be used if their cutoff frequency is
sufficiently below the sampling frequency so that a reasonably smooth output
is produced. Often the digital samples are fed directly to a D/A whose output
is analog low-pass filtered to smooth it. If this is done, the number of samples
per unit time fed to the D/A should be 5-10 times higher than the cutoff of
the filter to insure a reasonable reproduction of the original analog signal.

1.2 PROCESSING OF DIGITAL DATA
1.2.1 Data Validation

There are a variety of errors which can be introduced into digitized data by
random hardware and transmission errors. These may involve only a single
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bit or may represent a more serious loss of data. It is important before
investing a substantial effort in data processing that the data be subjected
to some preliminary screening. If possible the data should be plotted out as
a time series so the user can inspect it visually since few computer algorithms
are as effective at spotting data problems as the human eye-mind combination
of a skilled investigator.

Probability analysis can also provide useful clues as to the validity of
data. In particular, the probability density function can be especially useful
in spotting wild points and clipping. Statistical criteria can often be utilized
to remove or replace bad data. The exact treatment depends on the nature
of the errors, the signal itself, and the type of analysis to be carried out.

1.2.2 Computation of Moments

Assuming that a sufficient number of data are available to insure statistical
convergence, the moments can be computed in a straightforward manner.
For example, the mean and variance are computed from

1
and .
var{uy} = ﬁZf\il(ui —uy)?

The factor of (N — 1) in the last expression is preferable to N since
it can be shown to have less variability. The primary problem which can
occur is that the summation becomes so large that succeeding data make no
contribution since their scaled magnitude is less than the lowest significant bit
carried by the machine in the summation. This problem is called underflow
and can be very important when computing statistical quantities from large
blocks of data. As a preventive measure, it is a good practice to use at least
double precision variables for summation variables.

(12)

1.2.3 Computation of Probability Density Functions

The estimation of marginal or joint probability density functions from digital
data requires only an algorithm to sort the data into appropriately defined
boxes. The boxes must be sufficiently small that the shape of the measured
density is not distorted by the curvature of B(u) across the box. The vari-
ability of such estimators is inversely proportional to the expected number of

19



independent occurrences in each box. Samples may be assumed independent
if separated by at least two integral scales in time.

For example, if B(u) is the marginal probability density and Awu is the
box width at u, the expected number of occurrences in this box is NB(u)Au
where N is the total number of samples in the ensemble. Similarly for the joint
probability density function B(u,v), the expected number of occurrences in
a particular box is NB(u,v)AuAwv. (If the sampling rate is faster than one
sample every two integral scales, this number must be reduced by a factor
27 /At so that it correspondss to the number of independent samples in the
box.) Thus extremely long records are required to accurately estimate values
of the probability density function in the far tails which can be very small.
Obviously the situation can be relieved somewhat by increasing the size of
the boxes in the tails, but at the risk of increased bias due to curvature
effects.

1.2.4 The Autocorrelation and Cross-correlation

Direct computation of the auto- and cross-correlations from digitized signals
can easily be implemented on a digital computer by simply cross-multiplying
the data strings with the appropriate time lag and then averaging. Thus
1 one
C]%U(T) = Nzylzvzlmunvn+m (13)
where 7 = mAt. Note that the sum is divided by N instead of N — m since
this provides the least variability in the estimator. As always, care must be

taken to avoid underflow.
The statistical error in the estimate for the correlation is

, _ var{Ox(r)
S () (14)
21 C(0)?
= T ow (15)

where 7" = NAt is the record length and Y is the integral scale for the
process. Note that since C'(7)/C(0) — 0 as 7 — 0 because of stationarity,
the variability becomes unbounded. Thus, the smaller the correlation, the
larger the record length must be relative to the integral scale in order to
achieve a specified accuracy. Note that the variability is not dependent on
the A/D conversion rate 1/At, therefore At can be chosen for a convenient
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estimation of the correlation at the desired lags, as long as the spectrum is
not to be computed from the result. (If the spectrum is to be computed,
the Nyquist criteria must be satisfied.) Alternately, computations can be
minimized by computing only those time lags desired (as opposed to all
those possible).

A considerable savings in computational time can be achieved if only
pairs of points separated by two integral scales are utilized. This is because
pairs closer together are not statistically independent and therefore do not
contribute to reduce the variability.

An alternate means by which the correlation can be estimated is to first
compute the spectrum by means of a Fast Fourier Transform and then inverse
transform it to get the correlation. This method is sometimes referred to as
the ’direct method’ and will be discussed below under Spectral Analysis.

1.2.5 Fourier Analysis

The digital Fourier transform is defined as
e = BN upe™ 2N (16)

This can readily be shown to be the counterpart of the conventional contin-
uous transform

a(f) = / T u(t)e 2t (17)

—0oQ0
if the frequency is taken equal to the product of the index k£ and the band-
width B = 1/T where T is the record length. Note that only N/2 frequencies
are generated since both real and imaginary parts must be determined from
the N data points.

In many situations there is a considerable advantage to implementing
equation 16 by the so-called Fast Fourier Transform (FFT). The FFT can
be implemented in a variety of ways, all of which consist of shuffling the
data into bit-reversed order and introducing the appropriate phase factors.
The savings in computational time can be substantial since only Nin(N)
operations are required for an N-point transform as opposed to N2 operations
for the conventional implementation. Which particular FFT algorithm is
chosen is very much a function of the particular machine on which it is
implemented and the speed and accuracy desired.

Since the Fourier transform of even a real signal is in general complex,
it would appear that complex computations must be carried out. This is
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not the case since a number of algorithms exist which treat the real and
imaginary parts separately using only real variables. In fact, it is possible to
utilize the complex nature of the transform to simultaneously transform two
signals which have been interwoven; i.e., ui, v1, ug, vo, etc.

1.2.6 Spectral Analysis

There are two methods by which an estimator for the spectrum can be gener-
ated. The first of these requires computing the correlation function first, then
Fourier transforming it to obtain the spectrum. This method follows directly
from the fact that the correlation and spectrum are a Fourier transform pair;
that is,

S(f) = /_ Z C(r)e= I dr (18)
and ~ .
()= [ s(feridf (19)

It is usually more efficient on a digital computer to utilize a FFT algorithm
directly on the time series data, and then compute the spectrum from the
resulting Fourier coefficients. A ’direct’ estimator for the spectrum is given

by ,
a(f)]
sr(h) =17

where T is the record length. The frequencies are given in multiples of the
bandwidth B = 1/T (i.e. f = B, 2B, ---, NB/2), the index corresponding
to the index in the transform vector. Note that even though the spectrum
is real, it is determined by both the real and imaginary parts of the Fourier
transform.

If the signal which is being analyzed is a realization of a random signal,
its Fourier transform and the resulting spectrum will also be random. It can
be shown that the variability of a spectral estimator is given by

o _ver{Se(P} _ 1
S2(f) BT

(20)

(21)

where S(f) is the true spectrum, B is the bandwidth and T is the length of
the record from which the spectral estimate is made. Since the bandwidth
is B = 1/T, the rms fluctuation of the spectral estimate is equal to the
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Lag Window Lag Window
Name Formula
1 <M
Rectangular Dg(1) = { 0 ’m Y,
]
Bartlett Dg(r) = { (1) M m f %
Iz <
Tukey Dy(r) = 1/2{1+COSM} T <M
0 Tl > M
2 13
1-6{z} +6{5}" ,Iri<¥
Parzen  Dp(7) =y 2{1 - 2l}" M < r <M
0 Tl > M

Table 3: Equations for Common Lag Windows

spectrum itself! This is not acceptable since every realization of the signal
can be expected to yield spectra which are completely different. Therefore
some means of averaging or smoothing the spectral data must be utilized.

The simplest means of reducing the fluctuations in the spectrum is to sim-
ply average the spectral estimates obtained from independent data records,
the variability being reduced by the inverse of the number of estimates uti-
lized. If these blocks of data are obtained successively by subdividing a record
into m-subrecords, the reduction in the variability of the estimator can be
shown to result from the increased bandwidth since B = 1/T,, = m/T. This
procedure is usually referred to as block averaging.

An alternate method of reducing the spectral variability to acceptable
levels is by averaging adjacent frequency estimates, thereby increasing the
effective bandwidth of the estimate and reducing the number of independent
frequencies for which estimates are made. This operation corresponds to
convolving the original spectral estimate with a filter window, the window
being determined by the weighting used when summing adjacent coefficients.
In continuous variables,

Spalf) = [ S = oy

(22)
where W(f) is the frequency space representation of the window.

Several commonly used filter windows and their Fourier transforms are
shown in Figures 6 and 7 respectively. It is easy to show that the block
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Figure 6: Lag windows commonly in use. (see Table 3 for equations)

Lag Window Spectral Window Effective
Name Formula Bandwidth (Aw)

Rectangular Wg(w) =24 {S‘ZLMM} T
Bartlett ():5{%%$f o
Tukey = {SMM} el 31
Parzen ( ) =22 {7512;[]\/414 }4 3.17m

Table 4: Equations for Common Spectral Windows and Effective Bandwidth
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Figure 7: Spectal windows commonly in use. (see Table 4 for equations)
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averaging method employed above is equivalent to convolving the spectrum
with a Bartlett (or triangular) window. Note that several of the windows have
negative side lobes which can yield physically unrealistic negative spectral
estimates. These side lobes can lead to a problem called ’leakage’ which
occurs when the estimate at a given frequency is determined primarily by
the spectrum at different frequencies which contain more energy and have
been sampled by the side lobes. Leakage can be avoided by using windows
which are sufficiently narrow or have side lobes which roll off more rapidly
than the spectrum itself.

Convolution in frequency space corresponds to multiplication in time
space and vice versa. This can be used to facilitate the smoothing of spectra.
First the spectrum is inverse-transformed (by an FFT for example) to yield
the correlation function. This correlation function is multiplied point-by-
point by the appropriate time window, and then the result is transformed to
yield the smoothed spectra.

It should be noted that even though low frequency data may not be
desired, the record length must always be much greater than the integral
scale for the process, unless the time the process is correlated with itself is
reduced by high-pass filtering. This is because the expected value of the
spectral estimate (for the direct case) is really

sr(f) = [ c@e 1 - yar (23)

~T/2 T
whereas what we desire is given by equation 18. The finite limits in equation
22 are responsible for the 1/7 bandwidth discussed earlier. It is clear that
the estimate converges to the desired result only if the factor (1 — |7|/T)
is approximately unity over the range for which C(7) is non-zero. If not,
spectral leakage will be introduced by the ’default’ window, the record length.
Similar considerations can be shown to apply for the indirect estimator as
well.

1.2.7 Cross Spectra

There are fundamentally no differences between computing spectra and cross-
spectra by either method outlined above. If the direct method is used, the
transform of each channel is first computed, then the cross-spectrum is ob-
tained as
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Sp°(f) = === (24)

where * denotes the complex conjugate.

As before, these cross-spectra must be either block-averaged or smoothed
to reduce the variability. The procedure differs only in that the negative
frequencies must be accounted for separately since the cross-spectra are in
general neither symmetric nor real.

The constraints on minimum record length can be more severe than for
the spectrum and a significantly longer record may be required for cross-
spectra than for spectra. This is easily seen from the estimator which can be
shown to reduce (for the direct case) to

T/2 —2wfr T
Su(f) = o C™(r)e S l1 — %1 dr (25)

Unlike the autocorrelation, the cross-correlation does not in general peak at
7 = 0 and in fact may have its peak far from the origin. The record must
still be long enough to insure that the factor (1 — |7|/7) makes a negligible
contribution over any region in which C**(r) differs from zero.

To illustrate the kind of problems which can arise, consider two probes
responding to the same signal but with one delayed with respect to the other.
The record must be sufficiently long to insure that there is enough overlapping
information (i.e., the same detail sensed by both probes although at different
times) to permit averaging long enough to reduce the variability to acceptable
levels. This problem often arises with hard-wired analyzers and in small
computers where the record length is limited by the available memory. In
such situations an external delay must be introduced into one input to move
the peak of the cross-correlation to the origin, thereby reducing the record
length requirement to approximately that for the spectrum alone. The phase
introduced into the cross-spectrum by the external delay can be removed
by complex multiplication since the spectrum computed in this manner is
readily shown to be given by

lag(f) = 72T/ Tea GUU(f) (26)

where 7,4 is the externally introduced delay.
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