Second Order Systems
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Figure 3.1 Model of an automobile suspension with input and output signals.

Here is an example of a second order system from EAS 206.

Fo=cdxdt 4 Fs = kx

I F)

F(t)+ F,+ Fs= m d*x/dt?
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Second Order Systems
We can write the equation in the form
2
d°x dx

Mm—-+Cc—+kx=F(t
dt*  dt ©

consider first the simpler case where ¢ = 0 (no damping) and F(t) = 0. The
equation becomes

2
md—;(+kx=0
dt

which has the solution
y =Csin(w,t)

The mass will oscillate sinusoidally and the oscillation will continue
forever at the undamped natural frequency w,

Recognizing the periodic nature of the solution, it is convenient to rewrite the
equation in the form

2
Ld y+2§dy+y:KF(t)

2 2
o; dt© o dt (3.13)

where w, is the natural frequency and { (zeta) is the damping ratio.

k
W, = \/% = natural frequency of the system

(= 2\/% = damping ratio of the system
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Second Order Systems
Homogeneous Solution

The form of the homogeneous solution depends on the roots of the characteristic
equation

i%zz+%§z+1=o

aQ a

n n

The quadratic equation has two roots,

ﬂi,Z - _é/a)n ia)n \/gz -1

Depending on the value of , three forms of the homogeneous solution are
possible:

0 <{<1 (under damped system solution)

y ()=Ce“™'sin g 1-Ct+0O

(3.14a)
€ =1 (critically damped system solution)
— At 4 At
yh (t) Cle Czte (3.14b)
> 1 (over damped system solution)
t)=Ce" +C,e™
yh ( ) 1 2 (3.14¢)

The particular solution will depend on the forcing function F(t).
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Second Order Systems

Step Function Input

For an underdamped system, 0 <{ <1, F(t) = AU(t), the solution of equation
(3.13) is:

y(t)= KA— KAe ™" %sin 1=t +C0S gpy1- 2t

1—
J (3.15a)
For a critically damped system the solution is:
— -t
y(t)= KA— KAL+ o, t)e 5.15b)

For an overdamped system the solution is:

S0 KA—KA| SV oo oyt —1 el

2,/¢? -1 2% -1 (3.15c¢)

FIGURE 3.13 Second-order system response to a step
function input.

) (=0
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Second Order Systems

For underdamped systems, the output oscillates at the ringing frequency wqg

Ox fd (3.16)

_ / 2
@a=wn \1- 4 (3.17)

Remember f = w/2m

Rise Time

By definition it is the time required for the system to achieve a value of 90% of
the step input. The rise time is decreased by decreasing the damping (see figure
3.13 above). Obviously there is a tradeoff between fast response and ringing in a
second order system.

Settling Time
The settling time is defined as the time required for the system to settle to within

+10% of the steady state value.

A damping ratio, C, of 0.7 offers a good compromise between rise time and
settling time. Most dynamic response measurement systems are designed such
that the damping ratio is between 0.6 and 0.8

Frequency Response

If F(t) = A sin wt, the solution is given by

KAsin[wt + ¢(w)]
{[1- (0] o)’ T+ (2% w,)F" (3.18)

yt)=y,+

The first term is a transient which will eventually die out - the steady-state
response can be written in the form

y(t = ) =M (w) KAsin[ot + ¢(w)] (3.20)
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Second Order Systems

where
#(o) =tan"| - 2= wl”ﬂz
1- (0! wn) (3.19)
B 1
M(a)): KA: 212 2172
{[1- (0! @,) ]+ (20! @)} (3.21)
EXAMPLE 3.8

Find the rise and settling time and damped natural frequency of the second order
system step input response in figure 3.15.

From the figure y, is determined to be 1 V (note error in y axis label) and y, =2 V.

Therefore 90% of (y..-yo) is 0.9 V. The rise time can be determined by locating the
point at which the system response reaches yo + 0.9V = 1.9 V. The settling time is
determined by locating the point at which the system remains with the range of
Voo £ 10%( Yoo-Yo) = 2 £0.1V

The damped natural frequency or ringing frequency is found by determining the
period of the oscillation, Ty, and recalling the relation between period in seconds,
frequency in cycles per second and the conversion to circular frequency,
radians/second. From the graph T4 is found to be 13 ms. Therefore f;=1/13 ms =

COd/ZT[ .
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Magnitude ratio M {(w)

Second Order Systems

Resonance Frequency
Underdamped second order systems may resonate or oscillate at a greater

magnitude than the input, M(®) > 1.

Resonance Band: is the frequency range over which M(®) > 1.

Resonance Frequency: is defined as @z = a)n»\/l- 20°

Systems with a damping ratio greater than € > 0.707 do not resonate.
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Second Order Systems

EXAMPLE 3.10

Select and appropriate accelerometer natural frequency and damping ratio to
measure frequencies below 100 Hz (628 rad/s) and maintain a dynamic error of
+5%. (i.e. M(®) > 0.95)

Assume that the accelerometer has a damping ratio of most dynamic sensors of
0.7. Therefore using equation 3.21 one could solve for ®, or plot the equation
with £ = 0.7 and find the frequency range over which 1.05 < M(®) > 0.95.
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Figure 3.18 Magnitude ratio for second-order system with ( = (.7 for Example 3.10.
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