Bayes decision rule (continued)

In the last section we noted that the Bayes decision rule can be written as:

$$I_k(R) \geq_{not \ H_m} I_m(R)$$

which means that our task is to select the hypothesis with the minimum $$I_i(R)$$.

The above decision rule is re-written as:

$$\sum_j P_j(C_{kj} - C_{jj})p(R|H_j) \geq_{not \ H_m} \sum_j P_j(C_{mj} - C_{jj})p(R|H_j)$$

After cancelling the common terms, we obtain

$$(C_{km} - C_{mm})P_m p(R|H_m) \geq_{not \ H_m} (C_{mk} - C_{kk})P_k p(R|H_k) + \sum_{j \neq m, j \neq k} (C_{mj} - C_{kj})P_j p(R|H_j)$$

Define the $$i$$th likelihood function via:

$$\Lambda_i(R) \triangleq \frac{p(R|H_i)}{p(R|H_0)}$$

Therefore, the test becomes:

$$(C_{km} - C_{mm})P_m \Lambda_m(R) \geq_{not \ H_m} (C_{mk} - C_{kk})P_k \Lambda_k(R) + \sum_{j \neq m, j \neq k} (C_{mj} - C_{kj})P_j \Lambda_j(R)$$

- Note that there are $$\frac{M(M-1)}{2}$$ such inequalities.
- Note that the decision space is the $$(M - 1)$$ dimensional space of the likelihood function.
Figure 2. Decision regions

Special cases - Minimum probability of error criterion:

Cost functions are defined via:

$$C_{ij} = \begin{cases} 1 & ; i \neq j \\ 0 & ; i = j \end{cases}$$

i.e. unit cost function for all wrong decisions.

In this case, the risk function becomes:

$$R = \sum_j P_j \sum_i C_{ij} \int_{Z_i} p(\bar{R}|H_j)d\bar{R}$$

$$= \sum_j P_j \sum_{i \neq j} \int_{Z_i} p(\bar{R}|H_j)d\bar{R}$$

$$\underbrace{\text{Prob}[\text{choose } H_i | H_j \text{ is true}]}_{\text{Prob}[\text{error } | H_j \text{ is true}]} = \sum_j \text{Prob}[\text{error } | H_j \text{ is true}] = P(\text{error})$$

- Thus, minimizing the risk function with $C_{ij} = \delta_{ij}$ is equivalent to minimizing the overall probability (expected value) of error percentage.

After substituting $C_{ij} = \delta_{ij}$ in

$$I_k(\bar{R}) \preceq_{\text{not } H_m} I_m(\bar{R})$$

we obtain:

$$P_m \Lambda_m(\bar{R}) \preceq_{\text{not } H_m} P_k \Lambda_k(\bar{R})$$

$$P_m p(\bar{R}|H_m) \preceq_{\text{not } H_m} P_k p(\bar{R}|H_k)$$

Thus, for a given measurement \bar{R}, select the hypothesis that maximizes

$$P_i \Lambda_i(\bar{R}), \forall i = 0, 1, \ldots, M - 1$$
Rewrite equation (1) using the log-likelihood function:
\[\ln P_m + \ln \Lambda_m(\hat{R}) \overset{\text{mut}}{\gtrless} \ln P_k + \ln \Lambda_k(\hat{R}) \]

Going back to the original channel pdf's, we may also write the decision rule via:
\[P_m p(\hat{R}|H_m) \overset{\text{mut}}{\gtrless} P_k p(\hat{R}|H_k) \]

Dividing both sides by \(p(\hat{R}) \), where \(p(\hat{R}) = \sum_{j=0}^{M-1} p(\hat{R}|H_j) \), we get:
\[\frac{P_m p(\hat{R}|H_m)}{p(\hat{R})} \overset{\text{mut}}{\gtrless} \frac{P_k p(\hat{R}|H_k)}{p(\hat{R})} \]

Recall: \(p(a|b) = \frac{p(a)p(b|a)}{p(b)} \)
Associate \(a \to H_m, b \to \hat{R} \)
\[\therefore p(H_m|\hat{R}) \overset{\text{mut}}{\gtrless} \frac{p(H_k|\hat{R})}{p(\hat{R})} \]

\[\therefore \text{Therefore, the decision rule is to select the hypothesis that yields the maximum a posteriori pdf (i.e. the probability of a hypothesis given an observation).} \]

This is called the Maximum A Posteriori Probability (MAP) decision rule.

Summary
Minimum probability of error decision rule and MAP decision rule are the same; they are special cases of the Bayes decision rule with uniform cost for all incorrect decisions.

Example
Binary decision, i.e \(M = 2 \) ⇒ only one likelihood function.
\[\Lambda(\hat{R}) = \frac{p(\hat{R}|H_1)}{p(\hat{R}|H_0)} \triangleq \Lambda(\hat{R}) \]
\[\therefore \text{The Bayes decision becomes} \]
\[\Lambda(\hat{R}) \overset{\text{select } H_1}{\gtrless} \frac{p_0(C_{10} - C_{00})}{p_1(C_{01} - C_{11})} \triangleq \eta \]
\(\eta \), the threshold is set by the user based on the a priori probabilities (i.e \(P_0 \) and \(P_1 = 1 - P_0 \)) and the assigned cost functions.

Receiver
The receiver structure is as shown in figure 3.

Special case
MAP decision rule: substitute \(C_{00} = C_{10} = 0 \) and \(C_{11} = C_{01} = 1 \).
\[\Rightarrow \eta = \frac{P_0(1 - 0)}{P_1(1 - 0)} = \frac{P_0}{P_1} = \frac{P_0}{(1 - P_0)} \]
Log likelihood form:
\[L(\hat{R}) \triangleq \ln \Lambda(\hat{R}) \overset{\text{select } H_1}{\gtrless} \ln \eta \triangleq \xi \]
where

$$\xi = \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})}$$

e.g.

$$H_0 : \vec{R} = \vec{S}_0 + \vec{N}$$
$$H_1 : \vec{R} = \vec{S}_1 + \vec{N}$$

where

$$\vec{S}_0 = \begin{bmatrix} S_{01} \\ S_{02} \\ \vdots \\ S_{0N} \end{bmatrix}, \vec{S}_1 = \begin{bmatrix} S_{11} \\ S_{12} \\ \vdots \\ S_{1N} \end{bmatrix}, \vec{N} = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_N \end{bmatrix}$$

Source and channel model

n_i’s are independent identically distributed (iid) normal or Gaussian r.v.’s with zero mean and variance σ^2_N; $n_i \sim N(0, \sigma^2_N)$, $\forall i$.

$$E(n_i n_j) = \sigma^2_N \delta_{ij}$$
$$E(n_i) = 0$$

$$p(\vec{N}) = \frac{1}{(\sqrt{2\pi} \sigma_N)^N} \exp \left[- \frac{\sum_{i=1}^N n_i^2}{2\sigma^2_N} \right]$$

S_0 and S_1 are deterministic (known) vectors, e.g. samples of two known signals.

The observation pdf:

$$H_k : \vec{R} = \vec{S}_k + \vec{N}; k = 0, 1$$

$\Rightarrow \vec{R}|H_k$ is also normal multivariate with mean $E(\vec{R}|H_k) = \vec{S}_k$ and covariance matrix:

$$Cov = \begin{bmatrix} \sigma_n^2 & 0 & \cdots & 0 \\ 0 & \sigma_n^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$
In this case its pdf is:

\[p(\vec{R} | H_k) = \frac{1}{(\sqrt{2\pi}\sigma_N)^N} \exp \left[-\frac{\sum_{i=1}^N (r_i - S_{ki})^2}{2\sigma_n^2} \right] \]

where

\[\vec{R} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{bmatrix} \]

Likelihood function:

\[\Lambda(\vec{R}) = \frac{p(\vec{R} | H_1)}{p(\vec{R} | H_0)} = \frac{\exp \left[-\sum_{i=1}^N (r_i - S_{1i})^2/2\sigma_n^2 \right]}{\exp \left[-\sum_{i=1}^N (r_i - S_{0i})^2/2\sigma_n^2 \right]} \]

Log-likelihood function:

\[L(\vec{R}) = \ln(\Lambda(\vec{R})) \Rightarrow \sum_{i=1}^N 2r_i(S_{1i} - S_{0i})/2\sigma_n^2 \gtrless \xi \sigma_n^2 + 1/2 \sum_{i=1}^N S_{1i}^2 - 1/2 \sum_{i=1}^N S_{0i}^2 \]

Rewrite the above via:

\[\sum_{i=1}^N 2r_i(S_{1i} - S_{0i})/2\sigma_n^2 \gtrless \xi \sigma_n^2 + 1/2 \sum_{i=1}^N S_{1i}^2 - 1/2 \sum_{i=1}^N S_{0i}^2 \]

Define

\[E_0 \triangleq \sum_{i=1}^N S_{0i}^2 \]: energy of \(\vec{S}_0 \)

\[E_1 \triangleq \sum_{i=1}^N S_{1i}^2 \]: energy of \(\vec{S}_1 \)

and note that \(\sum_{i=1}^N r_i S_{ki} = \vec{R}^T \vec{S}_k \triangleq < \vec{R}, \vec{S}_k > \), also known as the projection of \(S_k \) onto \(\vec{R} \). The decision equation becomes:

\[(S_1 - S_0)^T \vec{R} \gtrless \xi \sigma_n^2 + 1/2(E_1 - E_0) \]

Note that \(E_k = < \vec{S}_k, \vec{S}_k > = \vec{S}_k^T \vec{S}_k \).

Therefore the projection of \(\vec{R} \) into \(\vec{S}_1 - \vec{S}_0 \) is the only information required (sufficient statistic) for decision making.

Unipolar ASK:

\[\vec{S}_0 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \vec{S}_1 = \begin{bmatrix} A \\ A \\ \vdots \\ A \end{bmatrix} \]

To transmit 0 or 1, an ON/OFF signaling scheme is required.

Therefore, the decision rule becomes:

\[\sum_{i=1}^N r_i(A - 0) \gtrless \xi \sigma_n^2 + 1/2(NA^2 - 0) \]
Dividing both sides by $N.A$

$$\frac{1}{N} \sum_{i=1}^{N} r_i \leftrightarrow \begin{cases} H_1 : \bar{R} \sim N(A, \frac{\sigma^2}{N}), r_i = A + n_i \\ H_0 : \bar{R} \sim N(0, \frac{\sigma^2}{N}), r_i = 0 + n_i \end{cases}$$

\[\bar{R} \leftrightarrow \begin{cases} \text{select } H_1 \leftrightarrow \frac{\xi \sigma^2}{\sqrt{N}} + \frac{A}{2} \triangleq \gamma \\ \text{select } H_0 \rightarrow \end{cases} \]

Note that for the decision, it is sufficient to reduce the processing by using the scalar \bar{R} instead of the N-dimensional \vec{R}.

Pdf of \bar{R} is given by:

$$H_0 : \bar{R} \sim N(0, \frac{\sigma^2}{N}), r_i = 0 + n_i$$

$$H_1 : \bar{R} \sim N(A, \frac{\sigma^2}{N}), r_i = A + n_i$$

$$\Rightarrow p(\bar{R}|H_0) = \frac{1}{\sqrt{2\pi} \frac{\sigma^2}{\sqrt{N}}} e^{\exp \left[- \frac{\bar{R}^2}{2 \frac{\sigma^2}{N}} \right]}$$
\[p(\bar{R}|H_1) = \frac{1}{\sqrt{2\pi \frac{\sigma_n^2}{N}}} e^{\exp \left[- \frac{\bar{R} - A)^2}{2 \frac{\sigma_n^2}{N}} \right]} \]

Special case: MAP or min. probability of error criterion with \(P_0 = P_1 = \frac{1}{2} \) yields:

\[\eta = \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})} = 1 \Rightarrow \xi = 0 \]

Probability of false alarm:

\[P_F = P(\text{error}|H_0) = \int_{-\gamma}^{\gamma} p(\bar{R}|H_0)d\bar{R} = \text{erfc}^{*}\left(\frac{\gamma}{\sqrt{N}}\right) \]

Probability of miss:

\[P_M = P(\text{error}|H_1) = \int_{-\gamma}^{\gamma} p(\bar{R}|H_1)d\bar{R} = \text{erfc}^{*}\left(\frac{A + r}{\sqrt{N}}\right) \]

Probability of detection:

\[P_D = 1 - P_M = \int_{\gamma}^{\infty} p(\bar{R}|H_1)d\bar{R} \]

Probability of error:

\[P_E = P_0.P(\text{error}|H_0) + P_1.P(\text{error}|H_1) \]

Bipolar ASK:

\[\bar{S}_0 = \begin{bmatrix} -A \\ -A \\ \vdots \\ -A \end{bmatrix}, \bar{S}_1 = \begin{bmatrix} A \\ A \\ \vdots \\ A \end{bmatrix} \]

\[\Rightarrow E_0 = NA^2, E_1 = NA^2. \text{ Therefore, the decision equation becomes:} \]

\[\sum_{i=1}^{N} r_i[A - (-A)] \gtrless_{\text{select } H_1}^{\text{select } H_0} \xi \sigma_n^2 + \frac{1}{2}(NA^2 - NA^2) \]

or

\[2A \sum_{i=1}^{N} r_i \gtrless_{\text{select } H_1}^{\text{select } H_0} \xi \sigma_n^2 \]

or

\[\bar{R} \gtrless_{\text{select } H_1}^{\text{select } H_0} \frac{\xi \sigma_n^2}{2AN} \triangleq \gamma \]

Pdf of \(\bar{R} \) is given by:

\[H_0 : \bar{R} \sim N(-A, \frac{\sigma_n^2}{N}), r_i = 0 + n_i \]

\[H_1 : \bar{R} \sim N(A, \frac{\sigma_n^2}{N}), r_i = A + n_i \]
\[p(\vec{R}|H_k) = \frac{1}{\sqrt{2\pi} \sigma_k} \exp\left[-\frac{(\vec{R} - S)^2}{2\sigma_k^2} \right] \]

where

\[S = \begin{cases} -A & \text{under } H_0 \\ A & \text{under } H_1 \end{cases} \]

For \(\gamma = 0 \) or MAP or min probability of error with \(C_{ij} = \delta_{ij} \),

\[P(\text{error}|H_0) = P(\text{error}|H_1) : \text{Bipolar} < P(\text{error}|H_0) = P(\text{error}|H_1) : \text{Unipolar} \]

Average transmitted energy:

\[E_b \triangleq P_0 E_0 + P_1 E_1 \]

For \(P_0 = P_1 = \frac{1}{2} \)

\[E_b = \begin{cases} \frac{1}{2} 0 + \frac{1}{2} N A^2 = \frac{NA^2}{2} & : \text{unipolar} \\ \frac{1}{2} \frac{NA^2}{2} + \frac{1}{2} \frac{NA^2}{2} = \frac{NA^2}{2} & : \text{bipolar} \end{cases} \]

Bipolar is better in probability of error performance since we use more energy in the transmission. Even if we adjust the \(A \) value to use the same average energy in both cases, still the bipolar performs better. The only scenario where the unipolar scheme is preferable are the asynchronous (non-coherent) systems.

Sufficient statistic

- In the previous section, we formulated testing of hypotheses based on an \(N \)-dimensional observed vector \(\vec{R} \).
- In an example, we demonstrated how the average value of the elements of \(\vec{R} \) is sufficient for the receiver to make a decision.
- We now present the general concept for what is referred to as sufficient statistic in decision theory.

Consider the transformation of \(\vec{R} \) denoted by:

\[\vec{W}_{L \times 1} = T[\vec{R}_{N \times 1}] \]

where \(L \leq N \); thus the transformation is not necessarily reversible. For the time being assume \(W \) to be of dimension \(N \times 1 \) and that the inverse of \(T[\cdot] \) exists.

We partition \(\vec{W} \) into two parts:

\[\vec{W}_{N \times 1} = [\vec{W}_{1L \times 1}, \vec{W}_{2(N-L) \times 1}] \]

We can write the likelihood function via:

\[\Lambda \vec{R} \triangleq \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)} \]

We also know that if \(y = g(x) \), then

\[p_Y(y) = \frac{p_X(x)}{\frac{dg(x)}{dx}} \]

If \(X \to \vec{W} \) and \(Y \to \vec{R} \), then

\[p(\vec{R}|H_i) = \frac{p(\vec{W}|H_i)}{J} \]

where \(J \) is the Jacobian of the transformation from \(\vec{W} \) to \(\vec{R} \). The Jacobian function is invariant of \(H_i \). Substitute in the likelihood function in terms of functions of \(\vec{W} \):

\[\Lambda \vec{R} = \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)} \]
Thus the test can be performed via processing the likelihood function for \(\mathbf{W} \). Using the Bayes theorem, we have:

\[
\begin{align*}
\mathcal{L}_{\theta}(\mathbf{R}) &= \frac{\mathcal{L}(\mathbf{W})}{\mathcal{L}(\mathbf{W})} \\
&= \frac{p(\mathbf{W}|H_1)}{p(\mathbf{W}|H_0)}
\end{align*}
\]

Thus the test can be performed via processing the likelihood function for \(\mathbf{W} \). Using the Bayes theorem, we have:

\[
\begin{align*}
p(\mathbf{W}|H_i) &= p(\mathbf{W}_1, \mathbf{W}_2|H_i) \\
&= p(\mathbf{W}_1|H_i) p(\mathbf{W}_2|\mathbf{W}_1, H_i)
\end{align*}
\]

Suppose there exists a partitioning of \(\mathbf{W} \) such that

\[
p(\mathbf{W}_2|\mathbf{W}_2, H_i) = p(\mathbf{W}_2|\mathbf{W}_1)
\]

i.e. it is invariant in the hypotheses. Using this in the likelihood function

\[
\begin{align*}
\mathcal{L}_{\theta}(\mathbf{R}) &= \frac{\mathcal{L}(\mathbf{W})}{\mathcal{L}(\mathbf{W})} \\
&= \frac{p(\mathbf{W}_1|H_1) p(\mathbf{W}_2|\mathbf{W}_1, H_1)}{p(\mathbf{W}_1|H_0) p(\mathbf{W}_2|\mathbf{W}_2, H_0)} \\
&= \frac{p(\mathbf{W}_1|H_1)}{p(\mathbf{W}_1|H_0)} \triangleq \mathcal{L}_{\theta}(\mathbf{W}_1) \geq \text{select } H_1 \text{ or } H_0 \eta
\end{align*}
\]

i.e the test is invariant in \(\mathbf{W}_2 \). In this case \(\mathbf{W}_1 \) is called sufficient statistic to construct the test.

e.g.: Binary hypothesis testing

\[
\begin{align*}
H_0 : r_i &= n_i \\
H_1 : r_i &= n_i + A
\end{align*}
\]

where \(i = 1, 2, \cdots, N \) and \(n_i \sim N(0, \sigma^2_n) \) and i.i.d \(\forall i \). \(A \) is a constant. The sufficient statistic is \(\mathbf{w}_1 = \sum_{i=1}^{N} r_i \).

It does not matter what \(\mathbf{W}_2 \) is.

\[
\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{bmatrix} = \begin{bmatrix}
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \cdots & \frac{1}{N} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & \ddots & \\
0 & \cdots & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ \vdots \\ r_N \end{bmatrix}
\]

e.g.

\[
\begin{align*}
H_0 : \bar{R} &= S_0 + \bar{N} \\
H_1 : \bar{R} &= S_1 + \bar{N}
\end{align*}
\]

where \(\bar{N} \sim N(0, \sigma^2_n) \). \(S_0 \) and \(S_1 \) are constants. In that case, we showed that the decision is based on

\[
l(\mathbf{R}) \triangleq (S_1 - S_0)^T \mathbf{R} \geq \text{select } H_1 \text{ or } H_0 \text{ threshold}
\]

The threshold is a scalar that is sufficient statistic for this detection problem.