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Only in recent years, the challenge of ubiqui-
tous sensing environments has become a
technical possibility with growing research
in wireless sensing networks. As the field of

mobile computing and communication advances, so does
the idea of a distributed, ad-hoc wireless network of hun-
dreds to thousands of microsensors, which can be ran-
domly scattered in the area of interest. A wireless
communication network between sensors facilitates sen-
sor collaboration, and a low-power digital signal proces-
sor (DSP) can do the analysis of sensor data locally.
Networked microsensors enable a variety of new applica-
tions such as warehouse inventory tracking, location
sensing, machine-mounted sensing, patient monitoring,
and building climate control [1]-[3].

One prime example of a microsensor application is
the use of acoustic sensors for environmental monitor-
ing. Acoustic sensors are highly versatile and can be
used in a variety of applications, such as speech recog-
nition, traffic monitoring, and medical diagnosis. The
sensor application that will be investigated in this arti-
cle is source tracking and localization. Multiple sensors

can be used to pinpoint the location of an acoustic
source (e.g., moving vehicle, speaker) by using a line of
bearing estimation technique. Source localization can
be useful for traffic monitoring, speech applications,
and military exercises.

Large sensor arrays have long been used in civil and
military applications to extend the field of view of the
user. However, most current sensing systems consist of a
few large macrosensors, which can be highly sensitive and
expensive. Macrosensor systems are not fault tolerant;
one faulty sensor can cause the entire system to fail. Net-
works of wireless microsensor nodes are becoming more
popular for reasons such as lower cost, ease of deploy-
ment, and fault tolerance. Fig. 1 shows examples of vari-
ous microsensor networks.

There are many new challenges to be faced in imple-
menting signal processing algorithms and designing en-
ergy-efficient DSPs for microsensor networks. The first
challenge is that all nodes are energy constrained. As the
number of sensors increases, it becomes infeasible to re-
charge all of the batteries of the individual sensors. To
prolong the lifetimes of the wireless sensors, all aspects of
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the sensor system should be energy efficient,
and design should focus on minimizing both
computational and communication energy
(see “Power Dissipation”). A second chal-
lenge is the high node densities, which results
from a large number of microsensors within
the network. The amount of sensing data will
be tremendous, and it will be increasingly dif-
ficult to store and process the data. An effi-
cient network protocol layer and signal
processing application are needed to extract
the important information from the sensor
data (see “Storage”).

In this work, we will study system parti-
tioning of computation to improve the energy
efficiency of a wireless sensor networking ap-
plication. We will explore system partitioning
between the sensor cluster and the base sta-
tion, employing computation-communica-
tion tradeoffs to reduce energy dissipation.
Also we will show that system partitioning of
computation within the cluster can also im-
prove energy efficiency by using dynamic volt-
age scaling (DVS).

Wireless Sensor Node Architecture
Energy awareness and energy efficiency are two desirable
characteristics of wireless sensor networks. The node ar-
chitecture must be flexible so that the nodes can adapt to
differing roles. For example, a node can act as a data gath-
erer, a relay, or a clusterhead. Also the node architecture
must be adaptable so that nodes can be energy aware of
varying conditions (e.g., changing signal statistics). An
energy-aware node should be able to adapt energy con-
sumption as energy resources of the system diminish or as
performance requirements change. Energy awareness
will lead to longer node lifetimes and more efficient sen-
sor systems. Another desirable characteristic of wireless
sensor networks is that all nodes are homogeneous and
will have the same architecture.

At the heart of energy efficient sensor networks is the
design of a low power wireless sensor node. An energy-ef-
ficient node architecture is being developed as part of the
low power wireless sensor project at MIT (µAMPS) [6].
Fig. 2 shows the architectural overview of a sensor node,
which contains four basic modules: sensor, data and con-
trol processing, communication, and power. The sensor
module contains the A/D converter and various sensors in-
cluding acoustic and seismic sensors. The acoustic sensor is
used for the application of source tracking and classifica-
tion, and a 1 kHz A/D sampling rate is required. The data
is continuously sampled and stored in on-board RAM to
be processed by the data and control processing module.

The other three modules are adaptable depending on
the role of the sensor within the network, and all three are
controlled by the data and control processing module.

For the source tracking application, we will assume that
the sensor node can have one of three roles: data gatherer,
clusterhead, and data relay. For example, if the node is a
data gatherer, then the sensor data is passed from the sen-
sor module to the communication module and then is
transmitted. If the node is a clusterhead where signal pro-
cessing is done, then the node will collect sensor data
from neighboring sensors and perform the data aggrega-
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Power Dissipation

Small sensor nodes imply limited physical space for
batteries, and high density implies that periodic

battery replacement will be a great inconve-
nience–and more likely, impossible. A state-of-the-art
lithium primary battery offers an energy density of
about 2 kJ per cm3 [4]. Assuming that 1 cm3 is available
within the node for the battery and that the desired de-
vice lifetime is one year, the average power dissipation
must be less than
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As this value exceeds the standby power of most
digital systems, energy dissipation is of paramount
concern. Moreover, Moore’s law simply does not apply
to batteries: the energy density of batteries has only
doubled every five to 20 years, depending on the par-
ticular chemistry, and prolonged refinement of any
chemistry yields diminishing returns [5]. Energy con-
servation strategies are therefore essential for achiev-
ing the lifetimes necessary for viable applications.

(a) (b)

(c)

Clusterhead

R

� 1. Three examples of microsensor networking protocols. In (a), the
microsensors are using direct communication with end-user. In (b), the sen-
sors transmit their data using multihop routing communication with base sta-
tion. (c) The third protocol is a clustering algorithm. Sensors are grouped into
clusters, and data is transmitted from sensors to clusterheads. Clusterheads
perform data aggregation and transmit the result to the base station. The
dark nodes represent clusterheads. (a) Direct communication, (b) multihop
routing, and (c) clustering protocol.



tion algorithm. A data-aggregation algorithm combines
multiple sensor signals into one signal. A data-relay node
receives data from neighboring sensors and transmits the
data to neighboring sensors or the end-user.

Examples of networking protocols that assign such
roles to microsensors are direct communication,
multihop routing, and clustering. In direct communica-
tion, as shown in Fig 1(a), all microsensors are data gath-
erers and transmit their results directly to the base station.
In multihop routing, sensors act as routers for other sen-
sor’s data in addition to sensing the environment, as
shown in Fig. 1(b). Multihop routing minimizes the dis-
tance an individual sensor must transmit its data and
hence minimizes the dissipated energy for that sensor.
However, this approach is not globally energy efficient.
An energy-efficient networking protocol organizes sen-
sors into local clusters, as shown in Fig. 1(c). Each cluster
has a clusterhead, a sensor that receives data from all other
sensors in the cluster, performs data fusion (e.g.,
beamforming), and transmits the results to the end-user.

This greatly reduces the amount of data that is sent to the
end-user and thus achieves energy efficiency.

The central component of the data and control pro-
cessing subsystem is the StrongARM SA-1100 micro-
processor. The SA-1100 is selected for its low power
consumption, sufficient performance for signal process-
ing algorithms, and static CMOS design. In addition, the
SA-1100 can be programmed to run at a range of clock
speeds from 74-206 MHz and at voltage supplies from
0.85-1.44 V [7]. On-board ROM and RAM are included
for storage of sampled and processed data, signal process-
ing tasks, and the operating system.

A simple energy model can be used to model the active
energy dissipation of the SA-1100 as a function of supply
voltage

E NCVddcomp = 2 (1)

where N is the number of clock cycles per task, C is the av-
erage capacitance switched per cycle, andVdd is the supply

voltage [8]. For the StrongARM SA-1100,
experiments show that C is approximately
0.67 nF [9]. Another component of processor
energy dissipated is the leakage energy, which
is caused by subthreshold leakage currents be-
tween power and ground
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Most processor energy models only con-
sider switching energy, but in systems that
have low duty cycles, leakage energy dissipa-
tion can become large [9].

Also it is important to model the clock
speed of the SA-1100 as a function of Vdd
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Storage

The amount of storage needed for a sensor network that is continually on will grow exponentially with the resolution
of sensing required. This problem can be solved with efficient networking protocols, and local signal processing is

needed.

Temperature Sensor Acoustic Sensor Image Sensor

Sampling frequency 1 Hz 1 kHz
20 frames/s

25k pixels/frame

Bit rate 7 b/sample 12 b/sample 8 b/pixel

Amount of sensing data from one hour
per sensor 25 kb 43 Mb 14 Gb

Amount of sensing data from one hour
for entire network (100-1000 sensors) 2.5-25 Mb 4.3-43 Gb 1.4-14 terebit

Power Module

Battery DC-DC
Conversion

Acoustic
Sensor

Seismic
Sensor

A/D
SA-1100

RAM ROM

Radio

Sensor Module Data and Control Communication

� 2. Architectural overview of µAMPS sensor node. The node can be broken
down into four modules: sensor, power, data, and control and communication.
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where a, K, c and Vth are processor dependent variables.
Note that for a given processor, the maximum perfor-
mance (f) of the processor is determined by the power
supply voltage (Vdd ), and vice versa. For minimal energy
dissipation, a processor should operate at the lowest volt-
age for a given clock frequency. For the SA-1100 the fre-
quency-voltage relation can be linearized to simplify the
calculations, and experiments show that K =23928.
MHz/V and c=05. V. The frequency-voltage relation for
the SA-1100 is shown in Fig. 4(b).

To collaborate with neighboring sensors and with the
end-user, the data from the data and control module is
passed to the radio or communication module. The pri-
mary component of the radio is a commercial transceiver
optimized for ISM 2.45 GHz wireless systems. The radio
module is capable of transmitting up to 1 Mb/s at a range
of up to 10 meters [10].

An energy model for the communication module has
also been developed to model the energy dissipated by a
sensor node when transmitting and receiving data [11].
The radio module energy dissipation can be characterized
into two types. The first is given by Eelec (J/b), the energy
dissipated to run the transmit or receive electronics and
the second is given by ε amp (J/b/m2), the energy dissi-
pated by the transmit power amplifier to achieve an ac-
ceptable E Nb o/ at the receiver. We assume an d 2 energy
loss for transmission between sensors since the distances
between sensors are relatively short [12]. To transmit a
k-bit packet a distance, d, the energy dissipated is

E k d E k k dtx ( , )= ⋅ + ⋅ ⋅elec ampε 2 (4)

and to receive the k-bit packet, the radio expends

E k E krx ( )= ⋅elec . (5)

For our radio, we use the parameters Eelec =50
nJ/b and ε amp =100 pJ/b/m2.

The fourth module is the battery or power
module that supplies the variable power for the
node. The power for the node is supplied by a
single 3.6 V dc source, which can be provided
by a single lithium-ion cell or three NiCD or
NiMH cells. Regulators are used to generate 5
V, 3.3 V, and an adjustable 0.9-1.6 V supplies
from the battery. The 5 V supply powers the an-
alog sensor circuitry and A/D converter. The 3.3
V supply powers all digital components on the
sensor node with the exception of the processor
core. A digitally adjustable switching regulator
that can provide 0.9 V to 1.6 V in 20 discrete in-
crements powers the StrongARM SA-1100
core. Having a digitally adjustable voltage sup-
ply allows the SA-1100 to control its own core
voltage and enables DVS techniques [13].

DVS is one technique that can be used to create an en-
ergy-scalable sensor system, which is able to adapt energy
dissipation with changing operating conditions. In an en-
ergy-scalable system, where there is a variable computa-
tional load, the sensor system should be able to scale the
amount of energy dissipated as the computational load
changes. In typical systems, design is done for the worst-
case scenario. For energy-scalable systems, this type of de-
sign may not be globally optimal for energy dissipation.
For example, assume in a fixed throughput system (T),
E fixed is the processor computational energy for task A.
Notice that the task is finished in half the allotted time,
T/2, as shown in Fig. 3. This is nonoptimal since after the
processor completes the task, it will idle for T/2 seconds.
This task can be completed with less energy dissipated by
reducing the clock frequency by half, so that the processor
is active for the entire T seconds, and consequently we can
reduce the voltage supply by half. According to (1), en-
ergy is related toVdd squared, so that by reducing the volt-
age supply by one-half causes the energy dissipated for a
variable voltage supply (Eevar ) to drop down to
one-fourth that of the fixed voltage supply case. Fig. 3
also shows a graph comparing energy for a fixed voltage
supply and energy for a variable voltage supply as the
computational workload changes. This graph shows the
quadratic relationship between energy and computation
when using a variable voltage scheme. Having a variable
voltage supply will enable energy-scalable implementa-
tion of signal processing algorithms.

Fig. 4(a) depicts the measured energy consumption
of an SA-1100 processor running at full utilization. En-
ergy consumed per operation is plotted with respect to
the processor frequency and voltage. This figure shows
the quadratic dependence of switching energy on supply
voltage. Also for a fixed voltage, the leakage energy per
operation increases processor energy dissipation, since
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� 3. As computational workload varies, variable power supply gives quadratic
energy savings. For a fixed latency requirement of T, if the computational
load is one-half of the worst case load, then the processor will be idle for T/2.
If a variable power supply is used, the frequency and voltage supply can be
halved dropping the energy dissipated down to a quarter of the fixed power
supply case.



operations occur over a longer clock period. This graph
shows that the optimalVdd and f points of operation is to
operate at the lowest possible voltage supply level for a
given frequency. Fig. 4(b) shows all 11 frequency-volt-
age pairs for the StrongARM SA-1100 for energy-effi-
cient operation.

Sensor Application Case Study
One application for wireless acoustic sensors is vehicle
tracking and localization. In this section, we will intro-
duce algorithms that would be running locally at the
acoustic sensor cluster and show how system partitioning
can yield a more energy-efficient sensor system.

Suppose a vehicle is moving over a region where a net-
work of acoustic sensing nodes has been deployed. To de-
termine the location of the vehicle, we first need to find
the line of bearing (LOB) or direction from which sound
is being detected. Fig. 5 shows the scenario for vehicle
tracking using LOB estimation. Multiple clusters of sen-

sors determine the source’s LOB to be the direction with
maximum sound energy from their perspective. The in-
tersection point of multiple LOBs will determine the
source’s location.

To perform LOB estimation, often beamforming al-
gorithms are used. A beamformer is a spatial filter that
operates on multiple sensor data to enhance the ampli-
tude of a desired coherent waveform and to diminish the
effects of background noise on the desired signal. By
pointing the beam in the direction of the source, the sig-
nal in the desired direction is amplified while ambient
noise from all other directions are diminished. Delay-
and-sum beamforming is a conventional beamforming
algorithm, which applies delays on the multiple sensor
data before summing over all sensors [14]. Beamforming
of sensor data is beneficial in two ways. First, by scanning
over multiple directions, the direction of arrival of the sig-
nal with the most signal energy relative to the orientation
of the sensor cluster can be found. This means that the di-
rection of arrival of sound is correlated to the LOB of the
source signal. Second, the beamformer output in the di-
rection of arrival will have better SNR since the effect of
the ambient noise sources have been reduced and the de-
sired signal is coherently added. Other beamforming al-
gorithms include the maximum power beamforming
algorithm [15] and the least mean square algorithm [16].

Traditionally, delay-and-sum beamforming has been
implemented in the time domain, frequency domain, or a
hybrid of the two. In the time domain, for a given direc-
tion of arrival, first the time delays between multiple sen-
sor data are estimated. Then the sensor data is shifted so
that they are aligned in time, before summing over all sen-
sors. One drawback of implementing the time-domain
delay-and-sum beamforming in the digital domain is that
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� 4. (a) This data shows the measured energy consumption characteristics of SA-1100, as Vdd is varied between 0.85-1.44V and as
clock frequency is varied between 74-206 MHz. For minimal energy dissipation for a given clock frequency, the SA-1100 is operated
at the minimum voltage supply. These operating voltage and frequency pairs are given in (b).
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� 5. Line of bearing estimates from multiple sensor clusters can
be triangulated to determine the vehicle’s location.



it is necessary to oversample the signal or interpolate the
sensor data to get the fine-grained delays necessary for
good beamformer performance. An acoustic sensor out-
put, which is nominally sampled at the Nyquist frequency
of 1 kHz, may have to be oversampled at 5-10 kHz. This
can lead to high computational demand depending on
the length of the interpolation filters and desired perfor-
mance [14]. A more energy-efficient method is to apply
interpolated sinc functions in an FIR filter beamformer
approach [17].

Delay-and-sum beamforming can also be performed in
the frequency domain, where delays in the time domain
correspond to phase shifts in the Fourier or frequency do-
main. First the sensor data is transformed into the fre-
quency domain. In the digital domain, the discrete Fourier
transform or the fast Fourier transform (FFT) can be used
[19]. Then phase shifts are applied before summing over
all sensors. The main advantage of a frequency-domain im-
plementation is that there is no need for oversampling the
sensor output, as compared to the time-domain approach.
For this application a 1024-pt. FFT is used.

The output of the delay-and-sum beamformer is then fed
into an LOB estimator. A simple LOB estimator takes the
beamformer output and calculates the signal energy for each
direction. The maximum weighted average of signal energy
over all directions is the LOB estimate for the signal.

Energy-Efficient System Partitioning
Between End-User and Sensors
In current wired sensor systems, all sensor nodes take on
the role of data gatherer and the data is sent to the end-user
to be processed because there is no energy constraint on
wired sensor systems. For a wireless sensor network, direct
communication between sensors and the end-user is both
cumbersome and highly energy intensive for a variety of
reasons. One reason is that the end-user is usually far away
from the sensing area, and therefore communication of
raw sensor data to the end-user can be quite costly. An-
other reason is that as the number of sensors in a network
grows larger and larger, it becomes difficult to manage the
large amount of data collected from the sensors. Also, with
increased node densities in one location, multiple sensors
may view the same event so there is a lot of redundant sen-
sor data. Fig 1(a) shows a wireless sensor network that uses
a direct communication networking protocol.

Research into energy-efficient wireless networking
protocols for sensor networks has shown that energy dis-
sipation can be reduced through both sensor collabora-
tion and intelligent communication and computation
energy tradeoff between the end-user and the sensors
[21]. Sensor collaboration means that the sensors can
communicate locally and share information. Since closely
located sensors tend to have highly correlated data, sensor
collaboration allows for signal processing of the sensor
data (e.g., beamforming) to reduce redundant informa-
tion. Also it is important to compare communication and

computation energy dissipated for a given application.
Commercial radios typically dissipate ~150 nJ/bit
[22]-[24] versus the StrongARM, which dissipates 1
nJ/bit [25]. Therefore communication is typically more
expensive than computation done on a general purpose
processor, allowing one to perform 150 instructions per
bit communicated. In comparison, application-specific
hardware can achieve up to three orders of magnitude
lower energy than a general purpose processor. By using
application specific hardware, millions of bits of opera-
tions can be performed per bit communicated.

An energy-efficient network protocol, such as cluster-
ing protocols, can take advantage of this asymmetry be-
tween communication and computation energy to greatly
reduce the energy dissipation in wireless sensor systems.
Using low energy adaptive clustering hierarchy (LEACH)
[21], an energy-efficient clustering protocol, the sensors
are organized into local clusters, as shown in Fig. 1(c).
Each cluster has a clusterhead, a sensor that receives data
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cludes a 1024-pt. FFT of the sensor data, frequency domain
beamforming, and a LOB estimator.



from all other sensors in the cluster, performs data fusion
(e.g., beamforming) and transmits the results to the
end-user. This greatly reduces the amount of data that is
sent to the end-user and thus achieves energy efficiency.

It is useful to compare the energy dissipated for the
two network protocols mentioned, direct communica-
tion and LEACH. Fig. 6 compares the amount of energy
required to communicate information from an M sensor
cluster ( M =3 6 9, , ) and to transmit the result to the
end-user. The ratio of energy for direct communication
( )Edirect versus energy for a clustering approach with de-
lay-and-sum beamforming ( )Ecluster is plotted as a func-
tion of distance from end-user to sensor cluster. When the
distance to the end-user is large (d>10m), the communi-
cation energy dissipated transmitting data to the end-user
dominates, and there is a large advantage to performing
local signal processing. When performing LOB estima-
tion, there is even more communication energy savings
because the only data transmitted to the end-user is the
LOB estimate.

Another advantage of doing local signal processing is
that the computation and communication energy can be
further reduced if the signal of interest has a limited band-

width. For our acoustic sensor application, the signal of
interest has a bandwidth of 20 250Hz Hzsource≤ ≤f .
Therefore only approximately one-fourth of the compu-
tation is needed. However, this is highly application de-
pendent.

Energy-Efficient System Partitioning
Between Sensors and Cluster-Head
Within a sensor cluster, each sensor node has its own pro-
cessor. We can take advantage of a network of multiple
microprocessors to distribute the computation among
the sensors. In this section we will show that intelligent
system partitioning with dynamic voltage scaling can
make our sensor network even more energy efficient.

We will demonstrate the effectiveness of system parti-
tioning on the energy dissipation of the LOB estimation
application. Fig. 7 is a block diagram that breaks down
the computation involved in the LOB algorithm. The
first part is to transform collected acoustic sensor data
from each sensor into the frequency domain using a
1024-pt. FFT. Then, the FFT data is beamformed into 12
uniform directions. The direction of the signal with the

most energy is the LOB of the source.
The LOB estimation algorithm

can be implemented in two different
ways. In the direct technique, each
sensor has a set of acoustic data, s ni ( ).
This data is transmitted to the
clusterhead where all LOB estimation
computation is done. This technique
is demonstrated in Fig. 8(a). Alterna-
tively, we can first perform the FFTs at
each sensor and then send the FFT re-
sults to the clusterhead. This can be
done since we assume a homogeneous
sensor network where all sensors have
the same architecture (shown in Fig.
2). This is the distributed method and
is shown in Fig. 8(b). If we assume the
processor models discussed previ-
ously, then performing the FFTs with

the distributed technique has no computational energy
savings over the direct technique, because the same total
amount of computation is being done. However, by hav-
ing a DVS-enabled sensor node, the node can take advan-
tage of the parallelized computational load by allowing
voltage and frequency to be scaled while still meeting la-
tency constraints.

In the DVS-enabled sensor node, there is a large advan-
tage in having the computation distributed among the sen-
sor nodes, since the voltage supply can be reduced. Table 1
shows the computation energy for a seven-sensor cluster.
In the direct technique, with a computation latency con-
straint of 20 ms, all of the computation is performed at the
clusterhead at the fastest clock speed, f =206 MHz at 1.44
V. The energy dissipated by the clusterhead processor is
measured to be 6.2 mJ and the latency is 19.2 ms. In the
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� 8. There are two ways to partition the computation for LOB estimation. (a) The first is
the direct technique, where all of the computation (FFT and beamforming) is done at
the clusterhead. (b) The second system partitioning scheme is the distributed tech-
nique. Here, the FFT is distributed among all sensors, and the FFT coefficients are trans-
mitted to the clusterhead where beamforming is done.

Table 1. Energy Results for Direct and Distributed
Technique for a Seven-Sensor Cluster.

Direct Distributed

Nodes Vdd — 0.85 V

f — 74 MHz

Clusterhead Vdd 1.44 V 1.17 V

f 206 MHz 162 MHz

Latency 19.2 ms 18.4 ms

Energy 6.2 mJ 3.4 mJ



distributed technique, the FFT is parallelized to the sensor
nodes. In this scheme, the sensor nodes sense data and per-
form the 1024-pt. FFTs on the data before transmitting
the FFT data to the clusterhead. At the clusterhead, the
beamforming and LOB estimation is done. Since the FFTs
are parallelized, the clock speed and voltage of both the
FFTs and the beamforming can be lowered. For example, if
the FFTs at the sensor nodes are run at 0.85V voltage sup-
ply and 74 MHz clock speed while the beamforming algo-
rithm is run at 1.17V and 162 MHz clock speed then with
a latency of 18.4 ms, only 3.4 mJ energy is dissipated by all
of the processors combined. This is a 45.2% improvement
in energy dissipation. This example shows that energy-effi-
cient system partitioning by parallelism in sys-
tem design can yield large energy savings.

Increasing parallelism is a common tech-
nique used in circuit design to reduce energy
dissipation when there is a fixed latency. For ex-
ample, if computation C can be computed us-
ing two parallel functional units instead of one,
then the throughput is increased by two. For a
fixed throughput, however, the clock frequency
is reduced to f / 2, and voltage supply of
Vdd / 2, then the energy is reduced by four
times over the nonparallel case. However, this
does come at an increase of area and overhead
control hardware. For a simple adder-compara-
tor 8-b datapath, it was shown that the power
was reduced by approximately 2.5 times [8].

For the sensor cluster, the energy savings co-
mes by distributing the computation to
six-node processors that run in parallel versus
one clusterhead processor running all tasks se-
rially. By running the FFT task in parallel, all
processors are able to operate at lower frequen-
cies and consequently switch the capacitance at
lower voltages. This leads to lowered energy
dissipation. The computation energy in this ex-
ample is measured using an experimental setup
using the StrongARM evaluation board [9].

Fig. 9 shows the timing diagram for the
three cases: direct technique, distributed tech-
nique without DVS, and distributed tech-
nique with DVS. For all three scenarios, at
time t, the sensors begin sensing acoustic data
from the microphones. After 1024 samples
are collected, then the nodes can begin pro-
cessing the data. Note that while the computa-
tion is being done, at the same time, new data
is being collected from the microphones. To
minimize buffer size, the LOB estimation
computation and intersensor communication
should be completed before the next 1024
samples have been collected.

In the direct technique timing diagram, the
clusterhead sensor (S7) does all of the signal
processing for LOB estimation. In the distrib-

uted technique without DVS, distributing the FFT to the
sensors would help the throughput of the LOB estimate,
but does not decrease the total computation energy dissi-
pated. Since this is a fixed latency system, the processors
would be idle for a long period. Therefore, by using DVS
to reduce clock frequency and voltage supply, the proces-
sors would be active the entire period and energy dissipa-
tion is also reduced.

An additional bonus in distributing the FFT is the re-
duction of communication energy between sensors. Due
to the nature of the sound source, the signal of interest has
a bandwidth between 20 and 250 Hz. This means that af-
ter doing the 1024-pt. FFT, only 230 Fourier coefficients
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� 9. Timing diagrams of three techniques: (a) direct technique, (b) distributed
technique without DVS, and (c) distributed technique with DVERSUS In the di-
rect technique, all of the computation is performed at the clusterhead serially.
In the distributed technique without DVS, the FFT is distributed and per-
formed in parallel, thereby improving throughput. In a fixed latency scheme,
it is better to use the distributed technique in conjunction with DVS By lower-
ing the clock frequency and voltage supply, the throughput is fixed, but en-
ergy dissipated is reduced.



needs to be transmitted. This means that the communica-
tion energy for the distributed technique can be reduced
by 50% over the direct technique case, where all 1024
samples are transmitted.

Optimal Vdd and
Clock Frequency Scheduling
By distributing the computation across sensors and using
DVS, we have shown that we can reduce the energy dissi-
pated. The next step is to calculate the optimal Vdd and
clock frequency for minimal computation energy dissipa-
tion. This is important because the system should adjust
operating voltages and frequencies of the sensor nodes to
changes in system parameters (e.g., number of sensors,
number of samples, etc.). Also, the operating system has
the ability to run different tasks (FFT, beamforming, etc.)
at differentVdd and clock frequencies. However, the opti-
mal Vdd and clock frequency should be chosen to mini-
mize energy while making sure the computation is done
within the latency constraint.

Finding the optimal operating points is not easy be-
cause the energy curve as a function of frequency and
voltage is highly nonlinear. Fig. 10 shows the computa-
tional energy dissipated for the seven-sensor LOB estima-
tion application for a fixed latency requirement of 20 ms
given our energy and frequency models. The curve is
plotted as a function of all possible< >f ffft bf, pairs. There
is a minimum energy operating point at f fft =68 MHz
and f bf =151 MHz, due to the tradeoff between energy
and performance between the two tasks and also remain-
ing within the latency requirement. To find a closed solu-
tion for the optimal operating voltage and frequency, we
want to minimize the total computation energy for an M
sensor cluster

E MN CV N CVcomp fft fft bf bf= +2 2 (6)

with the latency constraint that

T
N
f

N
fcomp fft bf

fft

fft

bf

bf

≥ + = +τ τ .
(7)

Here,Vfft andVbf are the operating voltages of the two
tasks, FFT and beamforming, and N fft and N bf are the cy-
cle counts, respectively. In general, to minimize energy,
we will want to reduce both voltage and clock frequency,
but the frequency must be large enough to satisfy the la-
tency constraint in (7).

To find the optimal voltage and frequency operating
points, first relate (7) in terms of voltage supply by using
the processor frequency equation (3) and solve a
Lagrangian minimization problem to get the relation be-
tween Vbf and Vfft

( ) ( ).V c M V cbf fft+ = +3 (8)

Equation (8) is substituted back into (7) and then we
solve for Vfft , Vbf , f fft , and f bf

V
T K

N
N

M
cfft

comp
fft

bf≥ +



+

1
3

(9)

V
M

T K
N

N
M

cbf
comp

fft
bf≥ +



+

3

3
(10)

f
M N N

MTfft
fft bf

comp

=
+( )3

3
(11)

f
M N N

Tbf
fft bf

comp
=

+( )3

.
(12)

These equations suggest that in general it is desirable to
run the parallelized task (FFT) at lower voltage and fre-
quencies than that of the nonparallelized task
(beamforming).

To verify this on the SA-1100, the FFT and
beamforming algorithms were run on the SA-1100:

N fft kcycles=20073. (13)

N Mbf kcycles= +3193 3416. . . (14)

This analysis assumes that the processor can run at
continuous voltage and frequency levels. However, im-
plementing this on processors that do not have continu-
ous voltage and frequency levels, such as the SA-1100, is
also possible. First, there is a constraint that Tcomp fall be-
tween the range of

N N
f

T
N N

f
fft bf

comp
fft bf+

≤ ≤
+

max min (15)
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where f max and f min are the maximum and minimum fre-
quencies possible for the processor. If Tcomp falls below the
lower limit, there is never enough time to complete the
computation, and if Tcomp is above the upper limit, mini-
mizing energy dissipation means always operating at the
lowest frequency and lowest voltage levels.

Fig. 11 shows energy dissipated for the direct tech-
nique versus distributed technique with optimal voltage
scheduling as M is increased from 3-10. Between 30-65%
energy reduction can be achieved with the distributed
techniques with optimal voltage scheduling.

This partitioning scheme can be generalized to any ap-
plication where parallelism can be exploited to distribute
computation among multiple processors. Let us assume
there are two tasks, A and B, each of which can be charac-
terized by their processor specific cycle counts, N A and
N B , respectively. A is the task to be parallelized to the M
processors and B is the nonparallelized task. Also assume
that the bandwidth between the processor does not
change for the two schemes. In the direct scheme, the fre-
quency of the processor for each task is set to

f f
MN N

TA B
A B= =

+

comp
.

(16)

For the distributed scheme, the voltages and frequencies
are given in (12)-(15)

The ratio of Edirect , the energy of the direct technique to
Edistributed , the energy of the optimal distributed tech-
nique, is calculated to approximately

( ) ( )

E
E

M D M

M M

N
N

N
N

N
N
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B

A
B

A
B

direct

distributed
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⋅ + + ⋅ +

+
−

1 1
3 2

1
( 3

1
3

2
33 3) ( ) ( )+ ⋅ + +

− −D M M MN
N

N
N

A
B

A
B

(17)
where D cKT N B=2 comp / . This ratio shows that as the
number of processors (M) increases, there is a large op-
portunity for energy savings because there is more paral-
lelism. Fig. 12 shows a plot of the energy ratio,
E Edirect distributed/ , as a function of cycle ratio, N NA B/ ,
for M =( , , )5 7 9 . This shows that when the computation
for task A (parallelized task) is relatively large compared
to task B (e.g., N NA B/ =10), then there is a great deal of
energy savings. Even when the computation in task A is
small compared to that for task B (e.g., N NA B/ .= 01),
however, there is still a possibility for energy savings of
2x. The upper limit of energy savings is when we take the
limit of (17) as N A goes to infinity, then the limit on en-
ergy savings is M 2 . This shows that for the general case,
there is a potential for a great deal of energy savings.

Summary
In this article we introduced two techniques for implemen-
tation of energy-efficient signal processing algorithms for

wireless sensor networks. One technique exploits commu-
nication versus computation energy tradeoffs. Clustering
the sensors and performing signal processing on the multi-
ple sensor data reduce communication of redundant infor-
mation reduced at the expense of processor energy. We
show that as the distance to the end-user increases and as
processor energy is much cheaper than communication en-
ergy, it becomes more energy efficient to perform signal
processing locally at the sensor node.

The second technique is to do efficient system partition-
ing of computation among sensor nodes. By parallelizing
the computation, energy reductions of up to 65% can be
achieved in a source localization application. Also intro-
duced is the closed-form expression for the optimal voltage
supply and clock frequency that minimizes the processor
energy dissipation. Using measurements from the Strong-
ARM SA-1100 this technique is verified for a LOB estima-
tion algorithm. Also the general case is discussed.
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