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ABSTRACT

The potential for collaborative, robust networks of microsensors
has attracted a great deal of research attention. For the most part,
this is due to the compelling applications that will be enabled once
wireless microsensor networks are in place; location-sensing, en-
vironmental sensing, medical monitoring and similar applications
are all gaining interest. However, wireless microsensor networks
pose numerous design challenges. For applications requiring long-
term, robust sensing, such as military reconnaissance, one impor-
tant challenge is to design sensor networks that have long system
lifetimes. This challenge is especially difficult due to the energy-
constrained nature of the devices. In order to design networks that
have extremely long lifetimes, we propose a physical layer driven
approach to designing protocols and algorithms. We first present
a hardware model for our wireless sensor node and then introduce
the design of physical layer aware protocols, algorithms, and appli-
cations that minimize energy consumption of the system. Our ap-
proach prescribes methods that can be used at all levels of the hier-
archy to take advantage of the underlying hardware. We also show
how to reduce energy consumption of non-ideal hardware through
physical layer aware algorithms and protocols.

1 INTRODUCTION

In recent years, the idea of wireless microsensor networks has gar-
nered a great deal of attention by researchers, including those in
the field of mobile computing and communications [1, 2]. A dis-
tributed, ad-hoc wireless microsensor network consists of hundreds
to several thousands of small sensor nodes scattered throughout an
area of interest. Each individual sensor contains both processing
and communication elements and is designed to monitor the envi-
ronment for events specified by the deployer of the network. In-
formation about the environment is gathered by the sensors and is
delivered to a central basestation where the user can extract the
desired data. Because of the large number of nodes in such a

network, sensors can collaborate to perform high quality sensing
and form fault-tolerant sensing systems. With these advantages
in mind, many applications have been proposed for distributed,
wireless microsensor networks such as warehouse inventory track-
ing, location-sensing, machine-mounted sensing, patient monitor-
ing, and building climate control [1, 3, 4, 5].

While the applications enabled by wireless microsensor networks
are very attractive, in order to build well-functioning, robust sys-
tems, there are many system challenges to resolve. Furthermore,
because the proposed applications are unique, wireless microsen-
sor systems will have different challenges and design constraints
than existing wireless networks (e.g. cellular networks and wire-
less LANs). For instance, since the number of sensors will be large,
node densities will be high (up to 20 nodes/m3) and large amounts
of data will be produced. Thus, large-scale data management tech-
niques will be needed. Secondly, user constraints and environmen-
tal conditions, such as ambient noise and event arrival rate, can be
time-varying in a wireless microsensor network. Thus, the system
should be able to adapt to these varying conditions. In addition to
these challenges, the energy consumption of the underlying hard-
ware is also of paramount importance. Because applications in-
volving wireless sensor networks require long system lifetimes and
fault-tolerance, energy usage must be carefully monitored. Fur-
thermore, since the networks can be deployed in inaccessible or
hostile environments, replacing the batteries that power the indi-
vidual nodes is undesirable, if not impossible.

This need to minimize energy consumption and to maximize the
lifetime of a system makes the design of wireless sensor networks
difficult. For example, since packets can be small and data rates
low, low-duty cycle radio electronics will be used in the system.
However, designing such circuits to be energy-efficient is tech-
nically challenging. As we will show, current commercial radio
transceivers, such as those proposed for the Bluetooth standard [6],
are not ideal for microsensor applications since the energy over-
head of turning them on and off is high. Thus, innovative solutions
in transceiver and protocol design are required to achieve efficient
transmission of short packets over short distances. Another chal-
lenge arises due to the remote placement of these nodes and the
high cost of communication. Since sensors are remotely deployed,
transmitting to a central basestation has high energy cost. Thus, the
use of data aggregation schemes to reduce the amount of redundant
data in the network will be beneficial [7]. Finally, since environ-
mental conditions and user constraints can be time-varying, the use
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of staticalgorithms and protocols can result in non-optimal energy
consumption. Thus, wireless microsensors must allow adaptation
of underlying hardware by higher level algorithms. By giving upper
layers the opportunity to adapt the hardware in response to changes
in system state, the environment and the user’s quality constraints,
the energy consumption of the node can be better controlled.

In summary, reducing energy consumption to extend system life-
time is a primary concern in microsensor networks. Thus, protocols
and algorithms should be designed with saving energy in mind. Un-
fortunately, without knowledge of the underlying computation and
communication hardware, performing intelligent power manage-
ment can be difficult. If system designers want to create energy-
efficient algorithms and protocols, correct and accurate modeling
of the underlying hardware is critical. Otherwise, system designers
run the risk of designing algorithms and protocols that do not re-
duce the overall system energy consumption significantly. If phys-
ical parameters are ignored, one could end up with an energyinef-
ficientsolution that only survives a short time.

In this paper, we introduce the design of physical layer aware
protocols, algorithms, and applications that minimize energy
consumption of the system and individual nodes1. In addition,
we show how to use software to deal with non-ideal physical hard-
ware. First, we describe a hardware implementation with param-
eters that can be adjusted by software. We will introduce algo-
rithms that take advantage of these adjustable hooks and knobs to
minimize energy. Data-link and media-access protocols that adapt
parameters of the underlying physical layer in order to minimize
energy will be presented. At the same time, we will illustrate how
protocols designed without knowledge of the hardware can be en-
ergy inefficient. Because our aim is to explore how to minimize en-
ergy consumption at different levels of the protocol stack, we will
not expound on any one of these techniques in too much detail.

2 RELATED WORK

Due to recent advances in integrated circuit and MEMS technol-
ogy, it is clear that small, low power sensing devices will be ready
to be deployed in sensor networks in the near future. Many re-
search groups are exploring the issues related to the design of nodes
for deployment in wireless sensor networks. The WINS [8] and
PicoRadio [5] projects are seeking ways to integrate sensing, sig-
nal processing, and radio elements onto a single integrated circuit.
Meanwhile, researchers involved in SmartDust [3] aim to design
particle-sized nodes for wide-area distributed sensing.

Network protocols for wireless microsensor networks, such asdi-
rected diffusion[9] andLEACH [10], are also beginning to emerge.
In directed diffusion, routes are dynamically formed as data is sensed.
Initially, routes called gradients that linksourcesof interesting data
to sinksare formed. Through data aggregation techniques, caching,
and reinforcement messages, the appropriate link is dynamically
selected from the candidates. Links are created only when data of
interest is sensed. Thus, less energy will be used by this protocol.
LEACH is a protocol that uses hierarchy to reduce the data col-
lected by the sensors before sending it on to a central base station.
Reducing the data that needs to be sent helps make LEACH more
energy efficient.

While research into energy-efficient protocols for sensor networks
1By physical layer, we not only mean the radio component, but also
the computational electronics.

is relatively new, many energy-efficient network protocols for ad-
hoc wireless networks have been presented. In [11, 12, 13], tech-
niques and metrics to evaluate and design energy-efficient routing
and MAC protocols for wireless networks are presented. Energy-
efficient protocols that adapt transmit output power and/or error
correction control parameters have been explored extensively by
a number of researchers [14, 15, 16, 17]. In [14], the authors use an
adaptive radio designed for wireless multimedia communications
over ATM as a model. In that paper, frame length and forward-
error correction parameters are adapted to lower energy consump-
tion of the radio and improve throughput as conditions of the chan-
nel change. A similar study is performed by [16] in the context of
a cellular-style network, but the output transmit power is also con-
sidered. In [17], an energy-efficient protocol that adjusts both RF
transmit power and error control strategy is examined for 802.11
wireless LANs. The authors of [15] offer an in-depth study of the
error process and then introduce a probing ARQ-type scheme that
is designed for energy-constrained devices.

In order to understand energy consumption, the underlying hard-
ware devices cannot be ignored. However, in much of the research
presented, only the impact of the radio is considered. In those cases
where the processing hardwareis considered, a generic mobile ter-
minal is used as the model. In general, the majority of the studies
have concentrated on networks intended for mobile terminals and
multimedia applications such as video and audio. In this paper, the
effect of the entire hardware architecture on the design of protocols
and algorithms is considered.

The authors of [18] do explore the idea of minimizing energy con-
sumption from a system perspective. That is, the energy consump-
tion of all devices in the mobile device are considered. The authors
consider both the energy required during active communication and
the energy required to run protocols on the device’s CPU. By con-
sidering the overall communication energy of the system, the au-
thors show that protocols that attempt to minimize the number of
messages in ARQ-type protocols do not necessarily minimize over-
all system power. As such, they present an adaptive strategy to tune
global communication parameters and reduce system energy con-
sumption.

While similar to some previous work, the research presented in this
paper differs in several respects. First, we describe an actual node
that is targeted for use in sensor networks. Given the hardware,
we introduce models that expose underlying properties of the hard-
ware. These models allow more energy-efficient protocols and al-
gorithms to be developed and also point to the need for designing
better hardware. In addition, in most of the previous studies, the
devices considered are far less energy-constrained than the nodes
intended for wireless sensor networks. Mobile, wireless hand-held
devices can be recharged periodically, while wireless sensor nodes
have small fixed energy sources.

3 APPLICATION SCENARIOS

Wireless microsensor networks can be used in a variety of appli-
cation spaces. Different configurations and network architectures
will be appropriate depending on the application. In this paper, the
protocol and algorithm design choices discussed are motivated by
applications for distributed, ad-hoc collaborative sensing networks.

For the most part, the protocols and algorithms discussed in this
paper are designed for one of two application scenarios. The first
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involves vehicle tracking and detection. In this application, we are
interested in detecting when a vehicle is in the region of interest and
in its velocity and direction of travel. In this application, hundreds
to thousands of energy-constrained nodes are scattered over the ter-
rain. Due to the high density of nodes,clusterscan be formed that
will enable reduced energy consumption. The data collected by the
sensors may be processed locally or sent directly to a central bases-
tation. Communication in this system may occur both among and
between sensors. Typically, inter-node data rates are quite low (≤ 1
Mbps) and packets sizes are relatively small (< 5 kbits). Further-
more, transmission distances between nodes are fairly short (≤ 10
m). On the other hand, the distance between a node and the bases-
tation can be as much as several kilometers. Since communication
costs over such large distances is energy-draining, communication
to the basestation should be avoided unless absolutely necessary.

The second application we will discuss concerns factory machine
sensing. The details of this application scenario will be provided in
Section 7.2. Before discussing how to leverage the physical layer
to produce energy-efficient protocols and algorithms at various lay-
ers of the protocol stack, we will present the architecture and im-
plementation of a node intended for use in collaborative sensing
applications.

4 THE µAMPS WIRELESS SENSOR NODE

TheµAMPS (micro-Adaptive Multi-domain Power-aware Sensors)
node is a wireless sensor node that exposes the underlying param-
eters of the physical hardware to the system designer. Our node
has the ability to scale the energy consumption of the entire system
in response to changes in the environment, state of the network,
andprotocol and application parameters in order to maximize sys-
tem lifetime and reduce global energy consumption. Thus, all lay-
ers of the system, including the algorithms, operating system, and
network protocols, can adapt to minimize energy usage. Figure 1
gives an overview of the architecture of the sensor node. The over-

ROMROM

ALGORITHMS

LINK LAYER

NETWORK

OS

RAM

BIAS CURRENT
START-UP TIME

RADIO

LEAKAGE CURRENT
WORKLOAD VARIATION

STANDBY CURRENT
LOW DUTY CYCLE

EFFICIENCY
VARIATIONS

CAPACITY 
VARIATIONS

DESIRED RESULT
QUALITY VARIATION

AVAILABLE ENERGY
VOLTAGE SCHEDULING

ACOUSTIC 

SEISMIC 

SA-1100
BASEBAND

BATTERY

DC-DC
CONVERSION

A/D

Figure 1: Architectural overview of our microsensor node. The
node allows algorithms to gracefully scale its energy consump-
tion by modifying underlying hardware parameters.

all node can be broken down into different variables that define
the energy consumption at each architectural block, from leakage
currents in the integrated circuits to the output quality and latency
requirements of the user. As a result, the energy consumption of
every component in the system can be exploited at the software
level to extend system lifetime and meet user constraints. Figure 2
shows the node implemented in actual hardware.

Whether for equipment monitoring, military surveillance, or med-

Figure 2: Hardware implementation of the node compared to
a U.S. quarter. The lower left board contains the sensor and
processor, while the board on the upper right contains the radio
transceiver.

ical sensing, information about the environment must be gathered
using somesensing subsystemconsisting of a sensor connected to
an analog-to-digital (A/D) converter. Our initial node contains an
electret microphone for acoustic sensing. However, a wider vari-
ety of sensors is supported. The acoustic sensor is connected to
a 12-bit A/D converter capable of converting data at a rate of 125
kilosamples per second (kSPS). In the vehicle tracking application,
the required conversion rate is about 1 kSPS. An envelope detector
is also included to allow ultra-low lower sensing.

Once enough data is collected, theprocessing subsystemof the
node can digitally process the data or it can relay the data to a
nearby node (or faraway basestation). The primary component of
the data and control processing subsystem is the StrongARM SA-
1110 microprocessor. Selected for its low power consumption, per-
formance, and static CMOS design, the SA-1110 runs at a clock
speed of 59 MHz to 206 MHz. The processing subsystem also in-
cludes RAM and flash ROM for data and program storage. A multi-
threaded “µ-OS” running on the SA-1110 has been customized to
allow software to scale the energy consumption of the processor.
Code for the algorithms and protocols are stored in ROM.

In order to deliver data or control messages to neighboring nodes,
the data from the StrongARM is passed to theradio subsystemof
the node via a 16-bit memory interface. Additional protocol pro-
cessing and data recovery is performed by a Xilinx FPGA. The
primary component of the radio is a Bluetooth-compatible com-
mercial single-chip 2.4 GHz transceiver [19] with an integrated fre-
quency synthesizer. The on-board phase-locked loop (PLL), trans-
mitter chain, and receiver chain can be shut-off via software or
hardware control for energy savings. To transmit data, an external
voltage-controlled oscillator (VCO) is directly modulated, provid-
ing simplicity at the circuit level and reduced power consumption
at the expense of limits on the amount of data that can be trans-
mitted continuously. The radio module, with two different power
amplifiers, is capable of transmitting at 1 Mbps at a range of up to
100 m.

Finally, power for the node is provided by thebattery subsystem
via a single 3.6 V DC source with an energy capacity of approx-
imately 1500 mAH. Switching regulators generate 3.3 V, and ad-
justable 0.9-2.0 V supplies from the battery. The 3.3 V supply pow-
ers all digital components on the sensor node with the exception of
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the processor core. The core is specially powered by a digitally
adjustable switching regulator that can provide 0.9 V to 2.0 V in
thirty discrete increments. The digitally adjustable voltage allows
the SA-1110 to control its own core voltage, enabling the use of a
well-known technique known asdynamic voltage scaling[20, 21].

5 HARDWARE MODELS

Using the node, an energy model of the device was developed.
Since the radio and data processing subsystems have the great-
est impact on the energy consumption of the node, we will fo-
cus on those two components. Note that while our node uses an
SA-1110, many of our measurements were obtained using the SA-
1100, which is very similar in performance and energy consump-
tion.

5.1 Processor Energy Model
The energy consumption of static CMOS-based processors designed
in the past couple of decades has been primarily due to switching
energy. The switching energy is expressed as

Eswitch = CtotalVdd
2

whereCtotal is the total capacitance switched by the computation
andVdd is the supply voltage.

As circuit designers become more concerned with reducing power
consumption, switching energy will become less dominant. Supply
voltages (Vdd) are constantly being lowered as an effective way
to reduce power consumption. At the same time, to satisfy ever
demanding performance requirements, the threshold voltage (Vth)
is also scaled proportionately to provide sufficient current drive and
reduce the propagation delay of signals in an integrated circuit. As
the threshold voltage is lowered, the sub-threshold leakage current
becomes increasingly dominant. Moreover, when scaling of device
thresholds for low-voltage operation is coupled with the low duty
cycle operation of a sensor, the dominance becomes more apparent.

To summarize, processor leakage energy is an important parameter
to model when designing a wireless microsensor network because
energy is wasted while no work is done. The energy lost due to
leakage current can be modeled with an exponential relation to the
supply voltage [22]:

Eleakage,µP = (Vddt)I0e
Vdd

n′VT

whereVth is the device threshold voltage andVT is the thermal
voltage. Experimentally, we have determined that for the Stron-
gARM SA-1100,n′ = 21.26 andI0 = 1.196 mA and that the
leakage energy accounts for about 10% of the total energy dissi-
pated. Since the leakage energy of future processors will be re-
sponsible for more than 50% of the total power consumption [23],
techniques to reduce the energy consumption penalty of low-duty
cycle operations must be devised.

Software-based techniques such as dynamic voltage scaling and the
progressive shutdown of idle components are some high-level leak-
age control techniques. These methods will be discussed in greater
detail when we present some physical layer aware, low-power pro-
tocols and algorithms.

5.2 Radio Model
The average power consumption of the radio in our design can be
described by:

Pradio = Ntx[Ptx(Ton−tx + Tst) + PoutTon−tx]

+ Nrx[Prx(Ton−rx + Tst)] (1)

whereNtx/rx is the average number of times per second that the
transmitter/receiver is used,Ptx/rx is the power consumption of the
transmitter/receiver,Pout is the output transmit power,Ton−tx/rx

is the transmit/receive on-time (actual data transmission/reception
time), andTst is the startup time of the transceiver as shown in
Figure 3. Note thatNtx/rx will largely depend on the application
scenario and the media-access control (MAC) protocol being used.
Also note thatTon−tx/rx = L/R, whereL is the packet size in bits
andR is the data rate in bits per second. In this radio model, the
power amplifier is on only when communication occurs. During the
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Figure 3: A diagram of the radio model.

startup time, no data can be sent or received by the transceiver. This
is because the internal phase-locked loop (PLL) of the transceiver
must be locked to the desired carrier frequency before data can be
demodulated successfully. Figure 4 shows the measured startup
transient of the low power transceiver in our node as described in
Section 4. The control input to the voltage-controlled oscillator (in
volts) is plotted versus time.

It is necessary to highlight a few key points about the radio we use
in our design. First, the transceiver power does not vary over the
data rate,R. At the 2.4 GHz frequency band, the power consump-
tion of the transceiver is dominated by the frequency synthesizer
which generates the carrier frequency. Hence, to a first order,R
does not affect the power consumption of the transceiver [24]. Sec-
ond, the startup time can have a large impact on the average energy
per bit, Eb, since wireless sensor networks tend to communicate
using short packets. In order to save power, a natural idea is to turn
off the radio during idle periods. Unfortunately, when the radio
is needed again, a large amount of power is spent to turn it back
on; transceivers today require an initial startup time on the order of
hundreds of microseconds during which large amounts of power is
wasted. Given thatPtx = 81 mW andPout ≈ 0 dBm, the effect of
the startup transient is shown in Figure 5, where the energy per bit is
plotted versus the packet size. We see that as packet size is reduced,
the energy consumption is dominated by the startup transient and
not by the active transmit time. Hence it is important to take this
inefficiency into account when designing energy-efficient commu-
nication protocols. The radio parameters used here are based on
a state-of-the-art commercial low power transceiver available to-
day [19]. Note thatPrx is usually 2 to 3 times higher thanPtx

since more circuitry is required to receive a signal. In our radio,
Prx = 180 mW.
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Figure 4: Measured startup transient (Tst ≈ 470µs) of a com-
mercial low power transceiver. The control input to the VCO
(in volts) is plotted versus time. When the PLL is not on, the
control input to the VCO is low. Once the PLL is turned on, it
takesTst for the control input to settle to the right voltage.
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Figure 5: Effect of startup transient where R = 1 Mbps, Tst ≈
450µs,Ptx = 81 mW, and Pout = 0 dBm.

6 PHYSICAL LAYER IMPACT ON ALGO-
RITHM DESIGN

The underlying physical layer can be exploited by both system-
level and node-level algorithms to achieve energy-efficient solu-
tions in wireless sensor networks. In this section, we will present
energy-efficient techniques at both levels that take advantage of
hardware hooks.

6.1 System-Level Computation Partitioning
One way to improve energy efficiency is to design algorithms and
protocols that take advantage of the dense localization of nodes in
the network. For example, in acoustic sensing applications, closely
located sensors will have highly correlated data. Thus, to reduce re-
dundant information in the network, sensors are grouped in clusters
and signal processing is done locally within a cluster. Through sig-
nal processing, nodes can remove redundant information, thereby
reducing communication costs. Another straightforward way to re-
duce energy consumption is to adapt the underlying hardware pa-
rameters of the node. In this section, we will present an algorithm
that can be performed in a distributed fashion to find the location

of the vehicle. By distributing the computation, we show that the
energy efficiency of the algorithm can be vastly improved.

Suppose a vehicle is moving over a region where a network of
acoustic sensing nodes has been deployed. In order to determine
the location of the vehicle, we first find the line of bearing (LOB) to
the vehicle. In this scenario, we assume that nodes are clustered and
that multiple clusters autonomously determine the source’s LOB
from their perspective. Individual sensors will send data to a “clus-
terhead”. The intersection point of multiple LOBs will determine
the source’s location and can be calculated at the basestation. In
this application, we will assume that due to user requirements, the
latency constraint on the computation is 20 ms. Figure 6 shows the
scenario described.

LOB 1

LOB 3 LOB 2

-180o -90o 0o 90o 180o

LOB estimate

Figure 6: Vehicle tracking application scenario. The basesta-
tion is not shown. In the figure on the bottom, the signal energy
for twelve different directions is shown. The LOB estimate is
the direction which has the most signal energy.

One approach to locate the source is to first estimate the LOB at the
cluster and then transmit the result to the basestation. Alternatively,
all the sensors could transmit their raw, collected data directly to the
basestation for processing. Figure 7 shows the energy required for
the first approach compared to the energy required for the second
approach. As the distance from the sensor to the basestation in-
creases, it is more energy-efficient to do signal processing locally,
at the sensor cluster.
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Figure 7: If LOB estimation is done in the network, energy dis-
sipation is reduced. As the basestation is located farther away,
it is more energy-efficient to do signal processing at the cluster-
head.

To perform LOB estimation, one can use frequency-domain delay-
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and-sumbeamforming[25]. Beamforming is the act of summing
the outputs of filtered sensor inputs. In a simple delay-and-sum
beamformer, the filtering operations are delays or phase shifts. The
first part of frequency-domain beamforming is to transform col-
lected data from each sensor into the frequency domain using a
1024-pt Fast-Fourier Transform (FFT). Then, we beamform the
FFT data in twelve uniform directions to produce twelve candi-
date signals. The direction of the signal with the most energy is the
LOB of the source. Given LOB’s from multiple clusters, we can
then calculate the location of the source. The source localization
algorithm is summarized below:

Source Localization Using LOB Estimation
Input: Let si(n) be the set of data for theith sensor.
Output: Source location (LOB).

1. LetSi(f) ← FFT (si(n)) for 1 ≤ i ≤ m.
2. Setj ← 1. Repeat the following 12 times:

2.1 (Beamforming) Usingm filtersW
(j)
i (f), apply theith fil-

ter toSi(f). W
(j)
i (f) represents the set ofm filters to use

for thejth trial.
2.2 Letyj =

Pm
i=1 W

(j)
i (f)Si(f). Incrementj.

3. LOB ← dir(max ‖y1‖2, ‖y2‖2, . . . , ‖y12‖2) where‖yj‖2 is
the signal energy ofyj .

The source localization algorithm can be implemented in two dif-
ferent ways. Assume each sensori has a set of acoustic datasi(n).
This data can be sent first to a local aggregator or “clusterhead”
where the FFTs and beamforming are performed. We will call
this technique thedirect technique, which is demonstrated in Fig-
ure 8(a). Alternatively, each sensor can transform the data locally
before sending the data to the clusterhead. This method will be
called thedistributedtechnique and is illustrated in Figure 8(b). If
we assume the radio and processor models discussed in Section 5,
then performing the FFTs locally, while distributing the computa-
tional load and reducing latency, has no energy advantage. This is
because performing the FFTs locally does not reduce the amount
of data that needs to be transmitted. Thus, communication costs
remain the same. However, because our node supports dynamic
voltage scaling, we can take advantage of the parallelized compu-
tational load by allowing voltage and frequency to be scaled while
still meeting latency constraints.

A/D
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Sensor 6

Sensor 2
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System partition #1

(a)

A/D FFT
A/D FFT

A/D FFT BF & LOB

Sensor 6

System partition #2

Sensor 7

Cluster-head

Sensor 1
Sensor 2
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Figure 8: (a) System partition 1: All of the computation is done
at the clusterhead (Etotal = 6.2 mJ, Latency = 19.2 ms). (b)
System partition 2: Computation of FFT is distributed among
sensors in a cluster (Etotal = 3.4 mJ, Latency =18.4 ms).

Dynamic voltage scaling (DVS) exploits variabilities in processor
workload and latency constraints and realizes this energy-quality
trade-off at the circuit level. As shown previously, the switching
energyEswitch of any particular computation is independent of
time. In addition, reducingVdd offers a quadratic savings in switch-
ing energy at the expense of additional propagation delay through
static logic. Hence, if the workload on the processor is reduced, or
the latency tolerable by the computation is high, we can reduceVdd

and the processor clock frequency together to trade off latency for
energy savings.

Figure 9 depicts the measured energy consumption of the SA-1100
processor running at full utilization [26]. The energy consumed
per instruction is plotted with respect to the processor frequency
and voltage. As expected, a reduction in clock frequency allows
the processor to run at a lower voltage. The quadratic dependence
of switching energy on supply voltage is evident, and for a fixed
voltage, the leakage energy per operation increases as the opera-
tions occur over a longer clock period. This result has been applied
by several researchers for CPU scheduling and algorithm design
[27, 28]. However, we show below that DVS can also be used to
allow system partitioning of computation.
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Figure 9: Measured energy consumption characteristics of SA-
1100.

In a DVS-enabled system, there is an advantage to doing distributed
signal processing. By distributing computation, the clock rate can
be reduced at each sensor, allowing for a reduction of the supply
voltage. In System Partition 1, the direct technique, all sensors
sense data and transmit their raw data to the clusterhead, where
the FFTs and beamforming are done. The clusterhead performs
the beamforming and LOB estimationbeforetransmitting the result
back to the user. In order to be within the user’s latency requirement
of 20 ms, all of the computation is done at the clusterhead at the
fastest clock speed,f = 206 MHz at 1.44 V. The energy dissipated
by the computation is 6.2 mJ and the latency is 19.2 ms.

In System Partition 2, the distributed technique, the FFT task is
parallelized. In this scheme, the sensor nodes perform the 1024-pt
FFTs on the data before transmitting the data to the clusterhead.
The clusterhead performs the beamforming and LOB estimation.
Since the FFTs are parallelized, the clock speed and voltage supply
of both the FFTs and the beamforming can be lowered. For exam-
ple, if the FFTs at the sensor nodes are run at 0.85 V at 74 MHz,
while the beamforming algorithm is run at 1.17 V at 162 MHz,
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then with a latency of 18.4 ms, only 3.4 mJ is dissipated. This is
a 45.2% improvement in energy dissipation. This example shows
that efficient system partitioning by parallelism can yield large en-
ergy reductions.

Figure 10 compares the energy dissipated for System Partition 1
versus that for System Partition 2 with optimal voltage scheduling
as the number of sensors is increased from 3 to 10 sensors. This
plot shows that a 30-65% energy reduction can be achieved with
the system partitioning scheme. Therefore, the use of DVS cou-
pled with system partitioning of computation should be considered
by protocol designers when designing an algorithm for sensor net-
works.
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Figure 10: Comparing computation energy used for System
Partition 1 vs. System Partition 2.

6.2 Node-Level Power-Mode Scheduling
Because not all algorithms can be partitioned over the entire sys-
tem, node-level techniques to extend lifetime are also needed. In
this section, we present apower-mode scheduling algorithmin-
tended for use on nodes in a sensor network. In general, a power-
mode scheduling algorithm is one that manages the active and sleep
modes of the underlying device in order to increase node lifetime.
The advantage of power-mode scheduling is that wasted energy due
to leakage can be reduced. If a device is completely turned off, no
leakage energy is dissipated.

Many techniques that attempt to minimize energy consumption of
devices and CPUs through power management and scheduling have
been considered [29, 30, 31]. Algorithms to schedule processes on
CPUs in order to minimize power consumption are the focus of [29]
and [30]. In [31], the authors use a semi-Markov decision process
model to devise a shutdown policy for various portable devices. A
shutdown policy that adapts to event arrival statistics is presented
here.

6.2.1 Power-Modes for the Sensor Node

In Section 5, we have introduced energy models for the radio and
processor of our node. Observe that there are several modes of op-
eration for each. For example, the SA-1100 can operate in several
different energy modes: active, idle, or sleep mode. Using these
different modes, we can define different sleep states or operating
modes for the node. Each operating mode corresponds to a particu-
lar combination of component power modes. In general, if there are

n components labelled(0, 1, . . . , n − 1), each withki number of
sleep states, the total number of node-sleep states is

Qn−1
i=0 ki. Ev-

ery component power mode is associated with a latency overhead
for transitioning to that mode. Therefore, each mode is character-
ized by a power consumption and a latency overhead. However,
from a practical point of view, not all the states are useful. Table
1 enumerates the component power modes corresponding to five
different useful energy modes for the sensor node. Each of these

Table 1: Useful sleep states for the sensor node.
State SA-1110 Sensor, A/D Radio

Active (s0) active sense tx/rx
Ready (s1) idle sense rx

Monitor (s2) sleep sense rx
Observe (s3) sleep sense off

Deep Sleep (s4) sleep off off

node-sleep modes corresponds to an increasingly deeper sleep state
and is therefore characterized by an increasing latency and decreas-
ing power consumption. These sleep states are chosen based on
actual working conditions of the sensor node. We assume thats0

is the only active state and that processing can only occur when
the SA-1110 is active. The power-aware sensor modes presented
here is similar to the system power model in the ACPI standard
[32]. An ACPI compliant system has five global stetes.System-
StateS0 is the working state, whileSystemStateS1 to Sys-
temStateS4 correspond to four different levels of sleep states.
The sleep states are differentiated by the power consumed, the over-
head required in going to sleep, and the wakeup time. In general,
the “deeper” the sleep state, the lower the power consumption and
the longer the wakeup time. With these sleep states, a system de-
signer can devise a policy of transitioning between states based on
observed events to maximize energy efficiency. The statistical na-
ture of the events may dictate the nature of the transition policy. An
example of such a policy is discussed in the next section.

6.2.2 Sleep State Transition Policy

The presence of a hierarchy of sleep states has to be exploited in-
telligently for optimum energy savings in the network. The various
shutdown stages are characterized by progressively lower power
consumptions and increasing transition overhead in terms of time.
If these overheads were ignored, a simple greedy algorithm that
puts the node into the deepest sleep state whenever possible would
work. However, in practice using such a scheme could result in
cases where more energy is consumed compared to when the node
was not put to sleep. An example of this scenario follows.

Assume an event is detected by nodek at some time and it finishes
processing the event att1 and the next event occurs at timet2 =
t1 + ti. At t1, nodek decides to transition to a sleep statesk from
theActive state as shown in Figure 11. Each statesk has a power
consumptionPk. Define the transition time tosk from the active
state byτd,k and the transition time from the active state tosk by
τu,k. By our definition of node-sleep states,Pj > Pi, τd,i > τd,j

andτu,i > τu,j for anyi > j.

We will now derive a set of sleep time thresholds{Tth,k} corre-
sponding to the states{sk} (for N sleep states), such that transi-
tioning to a sleep statesk from states0 will result in a net energy
loss if the idle timeti < Tth,k due to the transition energy over-
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Figure 11: State transition latency and power.

head. No productive work can be done in the transition period since
the transition time will consist of the time needed to lock the PLL,
the time to stabilize the clock, and the time required to restore the
processor context. The energy savingEs due to transitioning is
given by

Es,k = P0ti −
�

P0 + Pk

2

�
(τd,k + τu,k)− Pk(ti − τd,k)

= (P0 − Pk)ti −
�

P0 − Pk

2

�
τd,k −

�
P0 + Pk

2

�
τu,k

and such a transition is only justified whenEs,k > 0. This leads
us to the transition time threshold

Tth,k =
1

2

�
τd,k +

�
P0 + Pk

P0 − Pk

�
τu,k

�
which implies that the longer the delay overhead of the transi-
tion s0 → sk, the longer the transition time threshold, while the
greater the difference betweenP0 andPk, the shorter the thresh-
old. Using Poisson theory, it can be shown that the probability
that at least one event occurs in timeTth at nodek is given by
pth,k(Tth) = 1 − e−λkTth whereλk is the event arrival rate at
nodek. Table 2 lists the power consumption of the sensor node

Table 2: Sleep state power, latency and thresholds.
State Pk (mW) τk (ms) Tth,k (ms)

Active 1040 - -
Ready 400 5 8
Monitor 270 15 20

Look 200 20 25
Sleep 10 50 50

described in Section 6.2.1. Since the node consists of off-the-shelf
components, it is not optimized for minimum power consumption.
However, we will use the threshold and power consumption num-
bers detailed in Table 2 to illustrate our basic shutdown algorithm.
When an event is detected at nodek, it wakes up and processes the
event (this might involve classification, beamforming, transmission
etc.). It then updates a global counter which stores the total number
of events registered by nodek. The average arrival rate,λk, for
nodek is then updated. This requires the use of anµ-OS timer-
based system function call which returns the time elapsed since the
node was turned on. Theµ-OS then tries to put the node into sleep
statesk (starting from the deepest states4 throughs1) by testing

the probability of an event occurring in the corresponding sleep
time thresholdTth,k against a system defined constantpth0.

All the sleep states, except theDeep Sleep state have the actual
sensor and A/D circuit on. When an event is detected, that is, the
signal power is above a threshold level, the node transitions to the
Active state and processes the event. The only overhead involved
is latency (worst case being about25 ms). However, in theDeep
Sleep state, the node is almost completely off and it must rely on
a preset timer to wake up. In sparse event sensing systems, (e.g.
vehicle tracking, seismic detection etc.) the inter-arrival time for
events is much greater than the sleep time thresholdsTth,k. There-
fore, the sensor node will frequently go into theDeep Sleep state.
In this state, the processor must watch for preprogrammed wake-up
signals that are set by the CPU prior to entering the sleep state. To
be able to wake up on its own, the node must be able to predict the
arrival of the next event. An optimistic prediction might result in
the node waking up unnecessarily while a pessimistic strategy will
result in some events being missed. In our context, being in the
Deep Sleep results in missed events as the node has no way of
knowing if anything significant occurred. In general, the strategy
selected is a design decision based on how critical the sensing task
is. There are two possible strategies:

• Completely disallowDeep Sleep. If the sensing task is crit-
ical and any event cannot be missed this state must be dis-
abled.

• Selectively disallowDeep Sleep. This technique can be
used if events are spatially distributed and not totally criti-
cal. Both random and deterministic approaches can be used.
In our scheme, every nodek that satisfies the sleep thresh-
old condition forDeep Sleep goes to sleep with a system
defined probabilityps4 for a time duration given by

ts4,k = − 1

λk
ln(ps4). (2)

The steady state behavior of the nodes is described by (2). Thus,
the sleep time is computed such that the probability that no events
occur ints4,k is equal tops4. However, when the sensor network
is switched on and no events have occurred for a while,λk will
become zero. To account for this case, we disallow the transition
to states4 until at least one event is detected. We can also have an
adaptive transition probabilityps4, which is zero initially and in-
creases as events are later detected. The advantage of this algorithm
is that efficient energy tradeoffs can be made with only a fraction of
events missed. By increasingps4, the system energy consumption
can be reduced while the probability of missed events will increase
and vice versa. Therefore, our overall shutdown policy is governed
by two implementation specific probability parameters,pth0 and
ps4.

To evaluate the performance of our probabilistic scheme, we used a
custom-made Java-based event-driven simulator to simulate a1000
node system distributed uniformly at random over a100 × 100 m
area. The visibility radius of each sensor was assumed to ber = 10
m. The sleep state thresholds and power consumption are shown in
Table 2. Figure 12 shows the overall spatial node energy consump-
tion for an event with Gaussian spatial distribution centered around
(25, 75). It can be seen that the node energy consumption tracks
the event probability. In a non-power managed scenario we would
have uniform energy consumption in all nodes.
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Figure 12: (a) Spatial distribution of events (b) Spatial energy
consumption of nodes.

7 IMPACT OF HARDWARE ON PROTO-
COL DESIGN

In this section, we will explore the impact of the hardware on the
design of the link, MAC, and physical layers of the protocol stack.

7.1 Link Layer Considerations
In any protocol stack, the link layer has a variety of purposes. One
of the tasks of the link layer is to specify the encodings and length
limits on packets such that messages can be sent and received by
the underlying physical layer. The link layer is also responsible for
ensuring reliable data transfer. In the following section, the impact
of varying error control on the energy consumption of our node
will be discussed. In [14], a similar exploration of the impact of
adapting packet size and error control on system energy efficiency
was conducted.

7.1.1 Data Reliability

The level of reliability provided by the link layer will depend on
the needs of the application and user-specified constraints. In many
wireless sensor networks, such as machine monitoring and vehicle
detection networks, the actual data will need to be transferred with
an extremely low probability of error.

In our application, we assume that the objects of interest can have
high mobility (e.g. vehicles moving) and that the nodes themselves
are immobile. Thus, the coherence time of the channel is not much
larger than the signaling time of1µs. Given this scenario, we can
assume that nodes communicate over a frequency non-selective,
slow Rayleigh fading channel with additive white Gaussian noise.
This is a reasonable channel model to use for communication at 2.4
GHz where line-of-sight communication is not always possible2.

Consider one node transmitting data to another over such a channel
using the radio described in Section 5.2. The radio presented uses
non-coherent binary frequency-shift keying (FSK) as the modula-
tion scheme. For comparison purposes, the best achievable prob-
ability of error using raw, non-coherent binary FSK over a slowly
fading Rayleigh channel will be presented. LetPe be a function of
the receivedenergy per bit to noise power ratio(γb,rx).

2This model does not apply to all wireless sensor networks; Rician
or log-normal fading may be more appropriate. However, all of
these fading channels have similar characteristics.

In general,γb,rx = α2(Eb/N0), whereα is a random variable for
a fading channel. It is shown in [33] that the probability of error us-
ing non-coherent, orthogonal binary FSK isPe = 1

2+γb,rx
, where

γb,rx is the averageγb,rx. Unfortunately, this does not directly tell
us the amount of transmit powerPout that must be used in order to
get a certain probability of error. In order to determinePe as a func-
tion of Pout, we must consider the implementation of the radio. In
general, one can convertγb,rx to Pout using�

Eb

N0

�
rx

=
Pout

Plossᾱ
· 1

WNthNrx

wherePloss represents the large-scale path loss,α is the average
attenuation factor due to fading,W is the signal bandwidth,Nth is
the thermal noise andNrx is the noise contributed by the receiver
circuitry known as the noise figure. In general,Ploss ∝ 1

4πdk , 2 ≤
k ≤ 4.

A conservative estimate forPlossα is about70 dB. With a signal
bandwidth ofW = 1 MHz, Nth = −174 dBm andNrx ≈ 10 dB,
we find thatPout = Eb/N0 − 34 dBm assuming a data rate of1
Mbps. This equation can be used to find the transmit power needed
to obtain a certain averageEb/N0. The uncoded curve in Figure 13
shows the probability of error plotted against the output power of
the transmitter.

Since using a power amplifier alone is highly inefficient, forward
error correction (FEC) can be applied to the data to decrease the
probability of error. Many types of error-correcting codes can be
used to improve the probability of bit error. However, we will only
consider convolutional codes with base coding rates ofRc = 1/2
and punctured derivatives. For a frequency non-selective, Rayleigh
fading channel, a bound on thePe can be determined by applying

Pe <
1

k

∞X
d=dfree

βdP (d).

Hered represents the Hamming distance between some path in the
trellis decoder and the all-zero path, the coefficients{βd} can be
obtained from the expansion of the first derivative of the transfer
function,P (d) is the first-event error probability, anddfree is the
minimum free distance [33]. Figure 13 shows thePe for codes with
varying ratesRc and constraint lengthsK. Note that the probabil-
ities shown assumes the use of a hard decision Viterbi decoder at
the receiver. We see that greater redundancy (lower rate) or more
memory (higher constraint length) lowers the output power for a
givenPe. From this perspective, coding shouldalwaysbe used.

7.1.2 Energy Consumption of Coding

As shown, the use of FEC can decrease the transmit power. How-
ever, the additional processing required will increase the energy
of computation. Depending on the underlying architecture, energy
cost can be significant. Additional processing energy, denoted by
Edsp must be expended in order to encode and decode the data.
Additional energy cost will be also be incurred during the commu-
nication of the message since encoding a bit stream will increase
the size of the packet by approximately1/Rc, thereby increasing
Ton and the radio energy required to transmit a packet. If we de-
note the energy to encode asE

(e)
dsp and decode data asE(d)

dsp, then
the total energy cost of the communication can be derived from (1)
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Figure 13: The probability of error of different rate convolu-
tional codes plotted versus the transmit power for the radio de-
scribed in Section 5.2.Ploss = 70 dB, Nrx = 10 dB, andR = 1
Mbps.

as

E = Ptx(Ton−tx + Tst) + PoutTon−tx + E
(e)
dsp

+ Prx(Ton−rx + Tst) + E
(d)
dsp (3)

Given this model, we can then derive the average energy to trans-
mit, receive, encode and decode each information bit. IfRc is the
code rate andL is the packet length transmitted, then the number
of information bits isL′ ≈ LRc. Thus, the energy per useful bit is
Eb = E/L′.

In general, for convolutional codes, the energy required to encode
data is negligible. However, performing Viterbi decoding on a
StrongARM using C is energy-intensive. We have measured the
energy per useful bit required to decode1/2 and1/3-rate convolu-
tional codes with varying constraint length on the StrongARM. The
results are shown in Figure 14. Two observations can be derived
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Figure 14: (a) Decoding energy per useful bit forRc = 1/2
codes withK = 3 to 9 (b) Decoding energy per useful bit for
Rc = 1/3 codes withK = 3 to 8.

from these graphs. First, the energy consumption scales exponen-
tially with the constraint length. This is expected since the number
of states in the trellis increases exponentially with constraint length.

Another observation to make is that the energy consumption seems
to be independent of the coding rate. This is reasonable since the
rate only affects the number of bits sent over the transmission. A
lower rate code does not necessarily increase the computational en-
ergy since the number of states in the Viterbi decoder is unaffected.
In addition, the cost of reading the data from memory is dominated
by the updating of the survivor path registers in the Viterbi algo-
rithm. The size of the registers is proportional to the constraint
length and is not determined by the rate. Therefore, given two con-
volutional codesC1 andC2 both with constraint lengthsK, where
RC1 < RC2 , the per bit energy to decodeC1 andC2 is the same
even though more bits are transmitted when usingC1.

Given the data in Figure 14, we can now determine which convo-
lutional code to use to minimize the energy consumed by commu-
nication for a given probability of error. In Figure 15, the total en-
ergy per information bitEb is plotted againstPb. Figure 15 shows
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Figure 15: Energy per useful bit plotted versusPb of an un-
coded signal and a few convolutional codes with varying rates
and constraint lengths (Ploss = 70 dB, Nrx = 10 dB, R =
1 Mbps). The number of information bits is 10000.

that the energy per bit using no coding is lower than that for cod-
ing for Pb > 10−5. The reason for this result is that the energy
of computation, i.e. decoding, dominates the energy used by the
radio for high probabilities of error. For example, assuming the
model described in (3) andPout = 0 dBm, the communication
energy to transmit and receive per useful bit for anRc = 1/2
code is85 nJ/bit. On the other hand, the energy to decode an
Rc = 1/2, K = 3 code on the SA-1100 is measured to be2200 nJ
per bit.

At lower probabilities of error, the power amplifier energy begins
to dominate. At these ranges, codes with greater redundancy have
better performance. These results imply that coding the data is not
always the right thing to do if energy-efficiency is a crieria. One
may suspect that this result is due to the inefficiency of the Stron-
gARM in performing error correction coding. However, we will
show that his result will hold even if a more efficient implementa-
tion of the Viterbi decoder is used3.

3Note that the x-axis of the graph extends below10−9. At such
low Pb, these results are likely invalid. They are shown so that the
different codes can be distinguished.
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Figure 16: Measured decoding energy per useful bit forRc =
1/2 codes withK = 3 to 7 using our synthesized VLSI imple-
mentation.

Since the use of the StrongARM to perform Viterbi decoding is
energy inefficient, a dedicated integrated circuit solution to per-
form decoding is preferred. To explore the power characteristics
of dedicated Viterbi decoders, we implemented1/2-rate decoders
with different constraint lengths and synthesized them using 0.18
µm TSMC ASIC technology. Our designs are fully parallel imple-
mentations of the Viterbi algorithm where a separate add-compare-
select (ACS) unit is used for each state. Using Synopsys Power
Compiler, we estimated the energy per bit used by our designs dur-
ing the decoding of 20000 bits. Figure 16 shows the energy per bit
for various constraint lengths. Using our implementation, in addi-
tion to our radio model, we determined the minimum energy code
to use for a given probability of error. In Figure 17, the energy per
useful bit is plotted againstPb. From the graph, one can see that
the communication/computation scheme to use will be dependent
on the probability of error desired at the receiver. ForPb > 10−4,
no coding should be used. This is due to the fact that the transceiver
power (Ptx/rx) is dominant at high probabilities of error. Since
coding the data will increase the on time (Ton) of the transceiver,
using coding will increase the overall energy per useful bit4. Note
that oncePb < 10−5, the overall communication energy with cod-
ing is smaller since the energy of the power amplifier (Pout) will
begin to dominate. Figure 17 reinforces the idea that coding the
data may not necessarily be the best solution if energy-efficiency is
a criteria. Indeed, the coding strategy is highly dependent on the
desired output quality of the user.

7.2 Low Power MAC Protocols
In this section, we investigate how the non-ideal behavior of phys-
ical layer electronics in our system can affect the design of the
media-access control (MAC) protocol. We evaluate the energy-
efficiency of various MAC schemes for use in an asymmetric,co-
ordinatedsensor network where clusters or cells are formed around
high-powered basestations. An example of such a network is ma-
chine diagnosis in an industrial setting. Energy-constrained sensors
communicate to a single high-powered basestation nearby (< 10
m). In this application, the latency requirements of the data must be

4At high Pb, the required transmit power is not very high and the
energy to perform decoding is small. Thus, the transceiver energy
is dominant. Since coding increases the number of bits to transmit,
the energy with coding is greater.
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Figure 17: The energy per useful bit plotted againstPb using no
coding and various convolutional codes (Ploss = 70 dB, Nrx =
10 dB, R = 1 Mbps). The number of information bits is 10000.

strictly guaranteed. Note that data aggregation techniques cannot
be applied since sensors monitor different properties (e.g. tempera-
ture, pressure) of the machines. Table 3 summarizes the application
specification.

Table 3: Machine monitoring specification.
Cell Density < 300 in5 m × 5 m

< 3000 in100 m × 100 m
Range of Link < 10 m
Message rate average : 20 msgs/s
(L = 2 bytes) maximum : 100 msgs/s

minimum : 2 msgs/s
Error Rate and 10−6 after 5 ms

Latency 10−9 after 10 ms
10−12 after 15 ms

System Lifetime 5 years
Frequency band 2.400 - 2.4835 GHz (ISM)

7.2.1 DeterminingNrx andNtx

Recall from Section 5.2 thatNrx andNtx are factors that relate
to the underlying MAC protocol and intended application. In this
application, these parameters depend largely on the latency require-
ment specified by the user. Given these requirements, we derive the
best parameters to use for a low power MAC protocol for a single
cell where a high-powered basestation gathers data from the sen-
sors.

First, we examine a few candidate MAC protocols. For the pur-
poses of this discussion, we limit our choice of MAC protocols
to time division multiple access (TDMA) and frequency division
multiple access (FDMA) schemes. For this application, other more
complex multi-access schemes may not be appropriate. In particu-
lar, on-demand schemes (e.g. CSMA-CA) that require handshaking
not only increase the latency of the data, but detrimentally affect en-
ergy. Furthermore, in this application, efficient use of bandwidth is
not a concern.

In a TDMA scheme, the full bandwidth of the channel is dedicated
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Figure 18: Multiple access methods.

to a single sensor for communication purposes. Thus, the signal
bandwidth per sensor is equal to the available bandwidth and sen-
sors can transmit at the highest data rate. Since the transmit on-time
(Ton−tx) of the radio model described in (1), is inversely propor-
tional to the signal bandwidth, theTon−tx is minimized in TDMA
schemes. On the other hand, in an FDMA scheme, the signal band-
width (total available bandwidth divided by number of sensors) is
minimal. Thus,Ton−tx is at its maximum. A hybrid scheme in-
volving both TDMA and FDMA (TDM-FDM) is also possible. In
a TDM-FDM scheme, both time and frequency are divided into
available transmission slots. Figure 18 illustrates each of the dif-
ferent multiple-access schemes considered, where a shaded area
indicates a valid transmission slot for sensorSi.

In the schemes where TDM is employed, note that a downlink from
the basestation to the sensors is required to maintain time synchro-
nization among the nodes in the network. Due to the finite error
among each sensor’s reference clock, the basestation must send out
synchronizationpackets (SYNCs) to avoid collisions among trans-
mitted packets. Hence, the receiver circuitry of each sensor must
be activated periodically to receive theSYNC signals. As explained
in Section 5.2, the receiver uses more power than the transmitter.
Thus, we need to reduce the average number of times the receiver
is active. The number of times the receiver needs to be active (Nrx)
will depend onTguard, the minimum time difference between two
time slots in the same frequency band, as shown in Figure 18. Dur-
ing Tguard, no sensor is scheduled to transmit any data. Thus, a
larger guard time will reduce the probability of packet collisions
and thus, reduce the frequency ofSYNC signals andNrx.

If two slots in the same frequency band are separated byTguard, it
will take Tguard/δ seconds for these two packets to collide, where
δ is the percent difference between the two sensors’ clocks. Hence
the sensors must be resynchronized at leastδ/Tguard number of
times every second. In other words, the average number of times
the receiver is active per second,Nrx = δ/Tguard. Assuming
that the total slot time availableTavail = Ton + Tguard, we can
derive a formula relatingNrx to Tlat, the latency requirement of
the transmitted packet, as follows,

Nrx =
δ

Tguard
=

δ

Tavail − Ton
=

δ

(Tlat
M

− L
W

)h
(4)
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Figure 19: Energy with different Tst.

whereW is the available bandwidth,L is the length of the data
packet in bits,Tlat is the latency requirement of the transmitted
packet,h is the number of channels in the given bandW , andM
is the number of sensors. Here we have assumed that the data rate
R equals the signal bandwidth. Hence,Ton = L

R
= L

W/h
. From

(4), we see that as the number of channels decreases, the guard
time becomes larger andNrx is reduced. It is also apparent that
the advantage of ideal FDMA is that a receiver at the sensor is not
needed (i.e., asTguard →∞, Nrx → 0).

From (1) and (4), we can determine an analytical formula to find
hopt, the number of channels which gives the lowest power con-
sumption.

hopt =

s
δPrx(Ton−rx + Tst)

( Tlat
Ncell

− L
W

)Ntx(Ptx + Pout)
L
W

∝
r

Prx

NtxPtx
. (5)

Clearly, we see thathopt is determined by the ratio of the power
consumption of the transmitter to the receiver. As expected, if the
receiver consumes less power, a TDMA scheme is favored. On
the other hand, if the receiver uses more power, FDMA is more
appropriate.

An example of the previous analysis is performed in a scenario
where a sensor on average sends twenty 100-bit packets/s (Ntx =
20 times/s,L = 100 bits) and the latency requirement is 5 ms
(Tlat = 5 ms). Also, we assume thatW = 10 MHz and the num-
ber of sensors in a cell isM = 300. The resulting average power
consumption is plotted in Figure 19 and 20 where the horizontal
axis represents the number of channels available (h = 1: TDMA,
h = 300: FDMA) and the vertical axis is the average power con-
sumption.

In Figure 19, the average power consumption is plotted for various
startup times (Tst = 50 µs to 1 ms). We can see that the aver-
age power reaches a minimum value when a hybrid TDM-FDM
scheme is used. The variation in power consumption for different
h gets smaller as theTst is increased since the overall power con-
sumption is dominated by the startup time. In Figure 20, we can
see how the power consumption curve will vary if different radio
receivers are used. That is, we varyPrx while maintaining a con-
stantPtx. We see from this figure thathopt increases as receiver
power increases. Notice that despite the fact that a TDMA scheme
will have the minimum transmit on-time, the TDMA scheme does
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not achieve the lowest power. Indeed, as the number of channels is
reduced, the guard time decreases. This implies that more synchro-
nization is needed and thus, the receiver power starts consuming a
large portion of the total power.

7.3 Modulation Schemes
The modulation scheme used by the radio is another important fac-
tor which can strongly impact the energy consumption of the node.
As evidenced by (1), one way to increase the energy efficiency of
communication is to reduce the transmit on time of the radio. This
can be accomplished by sending multiple bits per symbol, that is,
by usingM -ary modulation. UsingM -ary modulation, however,
will increase the circuit complexity and power consumption of the
radio. In addition, whenM -ary modulation is used, the efficiency
of the power amplifier is also reduced. This implies that more
power will be needed to obtain reasonable levels of transmit out-
put power.

The architecture of a generic binary modulation scheme is shown in
Figure 21(a), where the modulation circuitry is integrated together
with the frequency synthesizer [19, 34]. To transmit data using this
architecture, the VCO can be either directly or indirectly modu-
lated. The architecture of a radio that usesM -ary modulation is
shown in Figure 21(b). Here, the data encoder parallelizes serially
input bits and then passes the result to a digital-to-analog converter
(DAC). The analog values produced serve as output levels for the
in-phase (I) and quadrature (Q) components of the output signal.
The energy consumption for the binary modulation architecture can
be expressed as

Ebin = (Pmod−B + PFS−B)Ton + PFS−BTst

+ Pout−BTon (6)

while the energy consumption forM -ary modulation is

EM = (Pmod−M + PFS−M )
Ton

n
+ PFS−MTst + Pout−M

Ton

n

=
(αPmod−B + βPFS−B)Ton

log2 M
+ βPFS−BTst

+
Pout−MTon

log2 M
. (7)

In these equations,Pmod−B and Pmod−M represents the power
consumption of the binary andM -ary modulation circuitry,
PFS−B and PFS−M represent the power consumed by the fre-
quency synthesizer,Pout−B and Pout−M represent the output
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(b) M -ary Modulation

Figure 21: Binary vs. M -ary Modulation.

transmit power for binary orM -ary modulation,Ton is the trans-
mit on time, andTst is the startup time. As mentioned, for the same
number of bits,Ton for M -ary modulation is less thanTon for bi-
nary modulation. Note thatn = log2 M , the number of bits per
symbol. The factors ofα andβ can be expressed as

α =
Pmod−M

Pmod−B
β =

PFS−M

PFS−B
.

Here,α represents the radio of the power consumption of the mod-
ulation circuitry betweenM -ary and binary modulation, whileβ
is the ratio of synthesizer power between theM -ary and binary
schemes. Basically these parameters represent the overhead that is
added to the modulation and frequency synthesizer circuitry when
one switches from a binary modulation scheme to anM -ary mod-
ulation scheme.

When we compare (6) and (7), we can see thatM -ary modulation
achieves a lower energy consumption when the following condition
is satisfied.

α < n

"
1 +

PFS−B [(1− β
n
)Ton + (1− β)Tst]

Pmod−BTon

#
+ n

Pout−B

Pmod−B
− Pout−M

Pmod−B
(8)

≈ n

"
1 +

PFS−B [(1− β
n
)Ton + (1− β)Tst]

Pmod−BTon

#
(9)

The last two terms of (8) can be ignored sincePout−B andPout−M

are negligible compared to the power of the frequency synthesizer.
A comparison of the energy consumption of binary modulation and
M -ary modulation is shown in Figure 22. In the figure, the ratio of
the energy consumption ofM -ary modulation to the energy con-
sumption of binary modulation is plotted versus the overheadα.
In Figure 22 we varyM to produce differentM -ary modulation
schemes. For each scheme, we also vary the startup time and as-
sume that 100 bit packets are sent at 1 Mbps. This implies that in
anM -ary scheme,1/ log M megasymbols are sent per second and
the on time is decreased.

284



1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

α 

E
M

−
ar

y/E
bi

na
ry

(50us,16−QAM)

(50us,8−QAM)

(50us,4−QAM)

(200us,16−QAM)

(200us,8−QAM)

(200us,4−QAM)

P
FS−B

=30mW, P
mod−b

=15mW, β=1.75
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tion.

As expected, theM -ary modulation scheme achieves the lowest
energy when the overheadα is small andTst is about50µs. When
the startup time is about 200µs, however, the energy consumption
is higher forM -ary modulation regardless ofα. This is because the
energy consumption due to startup time dominates the energy con-
sumption due to transmit on-time. Hence, reducingTon by using a
largerM has a negligible effect on the total energy consumption.

8 CONCLUSION

Throughout this paper, we have shown techniques at various lev-
els of the system hierarchy that take advantage of underlying hard-
ware to produce more energy efficient solutions. In some instances,
we have shown how to take advantage of hooks and knobs in the
physical layer to build more energy-efficient protocols and algo-
rithms. In other instances, we demonstrated how non-idealities of
the hardware can be mitigated by making careful, yet simple pro-
tocol design choices. As a whole, we advocate a physical layer
driven approach to protocol and algorithm design for wireless sen-
sor networks. In order to meet the system lifetime goals of wire-
less sensor applications, considering the parameters of the under-
lying hardware are critical. If protocol designers treat the physical
layer as a black box, system designers may design protocols that
are detrimental to energy consumption.

9 ACKNOWLEDGEMENTS

The authors would like to thank ABB Corporation for providing
invaluable application information. Thanks also goes out Ben Cal-
houn, Fred Lee, and Theodoros Konstantakopoulos for their help in
designing the node. Finally, the authors would like to thank Manish
Bhardwaj and all the reviewers for their insightful comments that
helped to improve the paper.

This research is sponsored by the Defense Advanced Re-
search Project Agency (DARPA) Power Aware Comput-
ing/Communication Program and the Air Force Research
Laboratory, Air Force Materiel Command, USAF, under agree-
ment number F30602-00-2-0551. Alice Wang is funded by a

Lucent Graduate Research Fellowship, while Rex Min is funded
by an NDSEG Fellowship.

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor
Networks,” inProc. ACM MobiCom ’99, pp. 263–270,
August 1999.

[2] K. Bult et al., “Low Power Systems for Wireless
Microsensors,” inProc. ISLPED ’96, pp. 17–21, August
1996.

[3] J. Kahn, R. Katz, and K. Pister, “Next Century Challenges:
Mobile Networking for Smart Dust,” inProc. ACM
MobiCom ’99, pp. 271–278, August 1999.

[4] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The
Cricket Location-Support System,” inProc. of MobiCom
’00, pp. 32–43, August 2000.

[5] J. Rabaeyet al., “PicoRadio Supports Ad Hoc-Ultra-Low
Power Wireless Networking,” inComputer, pp. 42–48, July
2000.

[6] L. Nord and J. Haartsen,The Bluetooth Radio Specification
and The Bluetooth Baseband Specification. Bluetooth,
1999-2000.

[7] A. Wang, W. Heinzelman, and A. Chandrakasan,
“Energy-Scalable Protocols for Battery-Operated
Microsensor Networks,” inIEEE SiPS ’99, Oct. 1999.

[8] G. Asadaet al., “Wireless Integrated Network Sensors: Low
Power Systems on a Chip,” inProc. ESSCIRC ’98, 1998.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks,” inProc. ACM MobiCom ’00,
pp. 56–67, August 2000.

[10] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocol for Wireless
Microsensor Networks,” inProc. HICSS 2000, January 2000.

[11] J.-H. Chang and L. Tassiulas, “Energy Conserving Routing
in Wireless Ad-hoc Networks,” inProc. IEEE INFOCOM
’00, pp. 22–31, March 2000.

[12] S. Singh, M. Woo, and C. Raghavendra, “Power-Aware
Routing in Mobile Ad Hoc Networks,” inProc. ACM
MobiCom ’98, Oct. 1998.

[13] V. Rodoplu and T. H. Meng, “Minimum Energy Mobile
Wireless Networks,”IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 1333–1344, August 1999.

[14] P. Lettieri and M. B. Srivastava, “Adaptive Frame Length
Control for Improving Wireless Link Throughput, Range,
and Energy Efficiency,” inProc. INFOCOM ’98,
pp. 564–571, March 1998.

[15] M. Zorzi and R. Rao, “Error Control and Energy
Consumption in Communications for Nomadic Computing,”
IEEE Transactions on Computers, March 1997.

285



[16] B. Narendran, J. Sienicki, S. Yajnik, and P. Agrawal,
“Evaluation of an Adaptive Power and Error Control
Algorithm for Wireless Systems,” inIEEE Inteernational
Conference on Communiations (ICC ’97), 1997.

[17] J.-P. Ebert and A. Wolisz, “Combined Tuning of RF Power
and Medium Access Control for WLANs,” inProc. MoMUC
’99, 1999.

[18] R. Kravets, K. Schwan, and K. Calvert, “Power-Aware
Communication for Mobile Computers,” inProc. MoMUC
’99, November 1999.

[19] National Semiconductor Corporation,LMX3162 Evaluation
Notes and Datasheet, April 1999.

[20] A. Klaiber, “The Technology Behind Crusoe Processors.”
Transmeta Corporation. http://www.transmeta.com, January
2000.

[21] I. Corporation, “Intel XScale Microarchitecture.”
http://developer.intel.com/design/intelxscale/, 2000-2001.

[22] A. Sinha and A. Chandrakasan, “Energy Aware Software,” in
Proc. VLSI Design ’00, pp. 50–55, Jan. 2000.

[23] V. De and S. Borkar, “Technology and Design Challenges for
Low Power and High Performance,” inProc. ISLPED ’99,
pp. 163–168, August 1999.

[24] M. Perrott, T. Tewksbury, and C. Sodini, “27 mW CMOS
Fractional-N Synthesizer/Modulator IC,” inISSCC Digest of
Technical Papers, pp. 366–367, February 1997.

[25] S. Haykin, J. Litva, and T. Shepherd,Radar Array
Processing. Springer-Verlag, 1993.

[26] R. Min, T. Furrer, and A. Chandrakasan, “Dynamic Voltage
Scaling Techniques for Distributed Microsensor Networks,”
in Proc. WVLSI ’00, April 2000.

[27] K. Govil, E. Chan, and H. Wasserman, “Comparing
Algorithms for Dynamic Speed-Setting of a Low-Power
CPU,” in Proc. of MobiCom ’95, August 1995.

[28] T. Pering, T. Burd, and R. Brodersen, “The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms,” in
Proc. of ISLPED ’98, August 1998.

[29] M. Weiseret al., “Scheduling for reduced CPU energy,” in
Proc. of 1st USENIX Symp. on Operating System Design and
Implementation, pp. 13–23, Nov. 1994.

[30] J. Lorch and A. Smith, “Reducing Processor Power
Consumption by Improving Processor Time Management in
a Single-User Operating System,” inProc. of MobiCom ’96,
1996.

[31] T. Simunicet al., “Dynamic Power Management for Portable
Systems,” inProc. of MobiCom ’00, pp. 11–19, August 2000.

[32] “The Advanced Configuration & Power Interface.”
http://www.teleport.com/∼acpi.

[33] J. Proakis,Digital Communications. New York City, New
York: McGraw-Hill, 4th ed., 2000.

[34] N. Filiol, T. Riley, C. Plett, and M. Copeland, “An Agile ISM
Band Frequency Synthesizer with built-in GMSK Data
Modulation,” in IEEE Journal of Solid-State Circuits,
vol. 33, pp. 998–1008, July 1998.

286


