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Discrete-Time Signals and Systems

Sequences:
x = {x[n]},—o <n<o ,ninteger. Sampling: x[n] = X (nT),—co<n<oo (1)

Important Sequences:

_ sinl = 0 0, n#0,
unitsample [n] = E L n=o. (2)
_ g1 n=0,
unit step uln] = E 0 h<o. (3)
Show that:
n 00
uln] = z O[K], u[n] = Z d[n—Kk] ,and d[n] = u[n]-u[n-1] (4)

k = —o0 k=0
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[ee]

Also x[n] = Z x[k]8[n—k] (5)
K = —o0

x[n] is alinear combination of appropriately delayed unit samples.
[00]

Similar to x(t) = [ x(1)d(t —1)dt in continuous-time systems.
(1) (1a(t—-71)

Exponential and sinusoidal sequences: x[n] = Aan,
x[n] = Acos(wyn + @) (6)

[e¢]

S Ixin)”

n=—ow

1/p
(7)

Measure ofasequence, [, Ixtnlll, =

Energyofasequence: = ||x||§ (8)




ECE 516 Lec 1 Viewgraph 3 of 8

Linear Discrete-Time Systems

X[n] T{} y[n]

yln] = T{x[n]} 9)

Linear Systems:
Linear <  Superposition (= additivity + scaling or homogeneity)

T{ax [n] + bx,[n]} = aT{x[n]} + bT{x,5[n]} (10)

Interesting observation: For almost all linear systems of interest, the scaling property can follow
from additivity! can you prove this?
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From x[n] = Z‘;:_mx[k]é[n—k] (5), and linearity (10):

O oo O "
=T =T k1d3[n-k]0O= k] T{3[n—k 11
y[n] {x[n]} E2k=—oox[ 19[n ]E Zk:_OOX[ 17{3[n-k]} (11)
Let h,[n] = T{8[n-kl} (12)
Then y[n] = ij:_oox[k]hk[n] (13)

Linear Time-Invariant Systems (LTI):
h [n] = h[n—k], h[n] = hy[n] (14)
Since T{d[n—-k]} = h[n-k] ,then y[n] = Z:z_mx[k]h[n—k] = x[n] o h[n] (15)

Convolution Sum
y is the (discrete-time) convolution of x with h

Show that convolution is commutative:

yln] = z‘::_mh[k]x[n—k] = h{n] x[n] = x[n] 5 h[n]
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Frequency Domain Representation of Discrete-Time
Signals and Systems (Frequency Response)

jown

Let x[n] = € ,—0<n<o,then

yinl = Y hKIxin-K =Y h K]/ =K) 2 glons S h[K]e ke (16)
= —0 K = —0 Q = —o0 U
Define HEe™®) = S h[k]e @K (17)
K = —o0
then y[n] = H(ejw)ejwn (18)

e’“"is an eigenfunction of the system. H(ejm) IS its associated eigenvalue, and is called the
frequency response of the system.

. iOF
1= Hp+jH, = |Hl€¢ (19)

H is periodic in w with period 211, and hence has a Fourier series representation (17).Therefore

Tt

hin] = %EJ' H(Ee™) e de

—Tt
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Representation of Sequences by Fourier Transforms:

Any sequence, with suitable convergence conditions:

Tt
Inverse Fourier Transform x[n] = %EJ’ X (ejw) " dw : (20)
—Tt
Fourier Transform X(€e"Y) = Z x[K] e 1K (21)
k = —o0

Frequency Response:

From convolution (15), y[n] = S o _  x[k]h[n-k] , Fourier transform of output is
K = —o0

Ve =y yime" = ;Zh[n—k]x[k]e"‘*’” - Zx[k];h[n—k]e_jw” -

n=—oo

Zx[k] e 1K S hln-K] e 7 =K =y e/ H(e!™) (22)
n
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Linear Constant-Coefficient Difference Equations

Nth-order linear constant-coefficient difference equation

N M
Z a, y[n—kj] = z b.x[n—r] (23)
k=0 r=0
N M
ay br
yln] = - Z E-Y[”—k]’f Z é—X[”—f] (24)
k=1 9 r=o 9

Let ap = 1. Causality, initial conditions, stability, IIR and FIR filters...

If a; = 0, I =1, 2, ...,N, then FIR filter, otherwise IIR.
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Examples of Filters:
Averaging Filter

N-1 \—ll

1 0=

yinl = & S xin-rl, hinl = 0N
H

r=0 =0
N

(%) -1 —Ji
HEe™) = S hln) e =y LT = I\%ME =

LN —jw
n = —oo n=20 Hi-e .
o WN
SNEZ-0 ~i(N-1)3
— e
N sin%)g
Ideal Lowpass filter
: 1 || < w
j _ |:| ) Cl
H(e™) =
D W <lwf<m
(‘OC
1 jon , _ sinw.n
h[ n] —ﬁfle dw = —

(25)

(26)

(27)

(28)
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Frequency Domain Representation of Discrete-Time
Signals and Systems (Frequency Response)

jown

Let x[n] = € ,—0<n<o,then

yinl = Y hKIXin-K = Y h K]/ =K) = glong S P (1)
K = —o0 k = —o0 Q( = —00 D
Define HEe™®) = S h[k]e /@K 2)
Kk = —o0
then yin] = HE®e" 3)

e’"is an eigenfunction of the system. H(ejm) IS its associated eigenvalue, and is called the
frequency response of the system.

. iOF
1= Hg+jH, = |Hl€¢ (4)

H is periodic in w with period 211, and hence has a Fourier series representation (17).Therefore

Tt
hin] = %EJ' H(Ee™) e de

—Tt
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Representation of Sequences by Fourier Transforms:

Any sequence, with suitable convergence conditions:

Tt
Inverse Fourier Transform x[n] = E%TEJ' X (ejw) " dw : (5)
—Tt
Fourier Transform X = Z x[ k] g /0K (6)
k = —o0

Frequency Response:

From convolution (15), y[n] = ZZO= _X[klh[n—k] , Fourier transform of output is

Ve =y yime" = ;Zh[n—k]x[k]e"‘*’” - Zx[k];h[n—k]e_jw” -

n=—oo

Zx[k] e /oK S hln-K] e 7=k = x (&) H(Ee™) (7)
n
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Symmetry Properties of the Fourier Transform:

Let x[n] = x[n]+x,[n] ,where

xelnl = S(xIn]+xT-nl), x,[n] = S(x[n] - xCI-n]) ®)
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Fourier Transform Theorems:

TABLE 1. Fourier Transform Theorems

Sequence Theorem

ax+ by Linearity
x[n-ng4] Time Shift

ejwonx[ nj Frequency Shift
x[—n] Time Reversal

nx[n] Differentiation in Frequency
X Convolution

Xy Modulation or Windowing

Parsevals Theorem

[oe]

S Xl = =[x do, 5 xinydnl = o [ X YT do

n=—oo

Fourier Transform
aX+byY
e—jw”dX(ejco)
X(ej(w—wo))
X(e_jw) , if real x théﬁE(ejw)
. d |
I%X(e w)
XY

Tt

1 8y v i (©=8)

5= X(€) v de
-
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Linear Constant-Coefficient Difference Equations

Nth-order linear constant-coefficient difference equation

N M
Z a, y[n—k] = Z b.x[n—r] (9)
k=0 r=0
N M
a br
yln] = - Z E-Y[”—k]’f Z é—X[”—f] (10)
k=1 0 r=o ©

Let ag = 1. Causality, initial conditions, stability, IIR and FIR filters ...

If a; = 0, I =1, 2, ...,N, then FIR filter, otherwise IIR.
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Examples of Filters:

Averaging Filter

1 ol
ylnl = 5 Z x[n=r], h[n] = O N’
r=0 QO

N

Ideal Lowpass filter

N-1

-1 —JwN
_ z h[n]ejoon: Dl%—jwn:lg!—e/ %
Y NOq_g7® 0
n=—o n=0 -
. [WN[ @
SIN=/—7 _i(N_1\%
1 L] De J(N 1)2
N sin%)g
1, wW<w,.,
el = E% 0 < w,
, W, <lw <m
(‘OC
1 joon _ sinw.n
h[n]—ﬁfle dw = —

(11)

(12)

(13)

(14)
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Digital Interpolator

h[n] =

H(ejw) = 9T = Zh[n] e_jwn,O<T<1
Tt

hln) = B[ He™) e deo

—Tt

sint(n—1) _ sinta

)

m(n-t1) T1(n-1)

n+1 _

sinTtt
m(n/t- 1)(_1)

(15)

(16)

n+1
(17)
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Sampling of Continuous-Time Signals

Periodic (uniform) Sampling:

«[n] = x,(nT), —00 < NN < (1)
Sampling Frequency: fe=1T (2)
Q . —j
(1) = jx (j)e’*d X Q) = [ xme 3)
T[ . - . o .
«n] = %T | X&) e’ g, X@% = Y XK e ok (4)
—TT k = —00
iQ T > ) 1
Ul = x0D) = [Xar 2§ i Ty Xev@e e ©
r=—oo
00 T 00
1 2 QnT j2 l 2 iQ T
5 Y [oxer i Ehe T M = L g { > XQ+) "ﬂ de @
r=—oo —T[/T r=—oo

W
Let Q = =, then
T
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Tt 00
1 1 W, 2T, | _jown
i = 5|3 Y XlF+ i | o (7)
—TT r = —00

(8)
Nyquist Sampling Theorem:

If x ,(¢) is bandlimited with X .(jQ) = 0 for [Q| >Q,,, then x (£) is uniquely determined by its
samplesx[n] = x(nT), n=20=12+2 if Q. = (2m)/ T >2Q,,
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Reconstruction of a Bandlimited Signal from its Samples:

) B . t—nT . _ sinTU
(1) = Zx[n]smc( = ), sinc(x) = —
If x[n] = x,(nT), and X (jQ) = Ofor|Q[>Q,, thenx () = x (.
Interpolation,
Digital Interpolator
H(ejw) = 9T = Zh[n] e_jwn,O<T<1
Tt
_0lp jooy _jeon
h[ n] EQHDI H(e w)e dw
—Tt
hin] = sint(n—1) _ sinTm n+l_  sinm n+l

m(n-t1) n(n—T)(_ ) - TF[(n/T—l)(_l)

9)

(10)

(11)

(12)
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Non-ldeal Sampling:

Example, averaging window:

1 nT
x[n] = - J' x (f)dt (13)
(nT -1)
_ i/, O<t<r,
Letr (f) = E 0 olce (14)
Thenx[n] = J'rT(nT—Z)xC(Z)dZ (15)
t
Let %olt) = [ rt-0x Q.  thenXc(jQ) = R ()X (/Q) (16)
sin—éI _j%
where R (JQ) = e , Group delay 1/2 (17)

Qr
2
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Discrete-Time Processing of Continuous-Time Signals:

If X .(JQ) is bandlimited, and the sampling rate is above the Nyquist rate, then

. : : . U H(Ee™), Ql<1/T,
(D) = HopUDX Q) Hgg@) = g€ ) 12«7 (18)
[0, Q=1/T
Examples of Filters:
Ideal Lowpass filter
, 1 |0 < W
|:| ’ c’
HE™) = 0 ey < (19)
, W, <lw <m
(*)c .
1 jon , _ sinwgn
h[n] = fﬁj le' dw = — (20)
_wc

If input is samples of bandlimited signal, sampled above Nyquist rate, then after ideal D/A, system
, QT <w,, or, Q] <w,/1

behaves as 1 Q) = 21
ertUY) Ep QT >w,, or, Q] >w, /1 (21)

Ideal Bandlimited Differentiator
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Impulse Invariance:

Given H (jQ) which is bandlimited, then to choose H(e'") such that H ,(jQ) = H .(jQ)

HE™) = Hy) 10l < (22)

with the further requirement that T is chosen such that H ,(jQ) = 0, Q=1/T.
Then, h[n] = Th(nT), or impulse invariance. If H ,(jQ) is not bandlimited, then

HE = Y Hc(j%)+ i) (23)

r=—o

Frequency Scaling:
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The z-Transform

(o¢]

X(z) = Z x[n1z”" (24)

n=—oo

Letz = rejw, X(rejw) = Z (x[n] r_n)e_jwn (25)
n=—oo
This is the Fourier transform of x| n] r~"". Uniform convergence requires absolute summability. this
happens generally for R _<|z| <R,.
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The z-Transform

00

X@ =5 xnz" (1)

n=—oo

Letz = rejw, X(rejw) = z (x[n] r_n)e_jwn (2)

n=—oo
This is the Fourier transform of x[n] r~"". Uniform convergence requires absolute summability. For

(0]

Z ‘x[n] r_n‘ < oo, this happens for R _<|z| <R,.

n=—oo

Replacing z by e’ in X(2) results in the Fourier transform of x[n], provided the unit circle is in
the region of convergence of the z-transform.
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Uniform convergence of the z-transform, corresponds to uniform convergence of the
corresponding Fourier transform, for sequences defined for a range of rs.

Neither of

sinw,n
[n] = — X,[n] = coswyn, —00 < N < (3)

is absolutely summable for any r. Thus no z-transform. But x; has finite energy, for which the
Fourier transform converges in the mean-square sense to a discontinuous periodic function. The
sequence X is neither absolutely nor square summable, but a Fourier transform using impulses is
possible. The Fourier transform is not continuous, infinitely differentiable functions in both cases,
so they cannot result from evaluating a z-transform on the unit circle, but we use a notion that
implies this.

The z-transform is particularly useful when expressed in closed form, as in the case of rational

functions

X@ = 59 @
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Examples:

exponential and unit step:

(o]

x[n] = a"u[n], X(2) = Z a'ulnz" = Z (az_l)n
n=20

= —00
00

. = L -1
Convergence requires Z ‘az ‘ < oo, Which is true for ‘az ‘ <1l,or|z| >|4.

) n=0
In region of convergence

1 V4
X(2) = = s 12>la

-1
l—-az

The z- transform converges for any finite value of a, the fourier transform only for |a|<1.

For a=1, x[n] is unit step sequence with z-transform

X(2) = —2—, |2l >1
1-2Z

(5)

(6)

(7)
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Let

Digital Filter Structures

N M
y[n] = Z a y[n—kj+ Z b.x[n—r]
k=1 r=0

(1)

(2)
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State Space Representation

Let M=N (discussion), express in powers of z, and isolate direct coupling:

N-1
Z BkZN—l—k

1(2) = d+ K20 - 3)
2N+ z GkZN -
k=1
Let state variable be the vector v(n) of dimension N. Then state space representation

/(n+1) = Av(n) + bx(n),

_ (4)
y(n) = cv(n) +dx(n)
‘0 1 0.. 0] 0
0 0o 1 0 0
=0 o0 0 1b=||c=By_1By_o B (5)
0
_—CXN _GN—l —(Xl_ _1_

H(Z) = c(zI-A) "b+d (6)
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Ocal~1 =
=DcA b, n=12.. 7)

d, n=20

[ n]

Non-singular Transformations

rvin+1) = TAT “Tv(n) + Tbx(n),

(8)
y(n) = chTv(n)+dx(n)
Input and output invariant, but
v=Tv
~ -1
A= TAT
. ) (9)
c=cT
b=Thb

By changing T, new strauctures are obtained that have different computational, roundoff, and
coefficient sensitivity properties. Changing T results in changing the basis in the state vector
space in which the system is represented.
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The Discrete Fourier Transform

k=0
N-1 -~k
X(k) = Z x[n]e
n=20
Z plane
21UN
Wi

_j2m
I'N

(1)

(2)
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Finite and Periodic Sequences:

N-1
X(2) = Z x[n]z
n=0
N-1
X' = Z x[ne?" o = 2Nnk,k =0,1.. N-1
n=0
jagk N1 _j2nk
Xk =Xe ) = Zx[n]e k=01..,N-1
n=0
2Tt N—-1
_ Vi a nk
X(=x@e " )= 3 x(nWy k=01..,N-1
n=20
N-1
x[n] = /\1/ ) Xtw ™  n=01..,N-1
k=0

3)

(4)

(5)

(6)

(7)
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Constructing X(zjrom Frequency Samples for Finite Sequences:

N-1 N-1. N-1 1N
X@) = § xnz" = Z %% S X(K) W (8)
n=0 =0~ k=0 .
ot N -2V 1A X
== S XK S Wezh =< X0~ z___ =222 sl (9)
NkZO nZO ! Z W/_sz_l N kzol—WX,kZ_l
Infinite Sequences:
X@ =Y x[n1z”" (10)
n=—cw
Let
XW=X@)| = T xnl Wk =01, ..N -1 (11)
Z=e€ N n = —oo

ZII—‘

The inverse DFT of X(k) is X[n], defined by X[n] =

Z Xow ™ n=01..,N-1,
resulting in =
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— -1 0 00
_ 1 -nk _ 1 km,, —kn _ —k(n- )
x[n] = % Z Xow ™™ = 25 S xmwwy” = x[m]g% Z wy ")
= k=0m= - m —_oo
N 1
ks _ U, S=TrN
N 1 = 4N N Z Wi EO otherwise
Using + z Wy ~k(n-m) _ M= At , as shown N-1 1w a =1
D0 else ‘or s:rer;l > W;,ks -1 =0
- N o N1-wy
then N
-~ .
x[n] = Z x[n+rN] (13)
r = —oo

So, X is an aliased version of x.

Properties of the DFS/DFT:

Linearity: x35[n] = axq[n] +bx,[n] = X(k) = aX4(k)+ bX,(k)

Both x; and x, are periodic of same period, or finite of same length.
Circular Shift: Xn = X[n+m]  ~  Xq(k) = W;,km)?(k;

Circular (Periodic) Convolution:
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N-1
kglnl = Y XylmlfoIn—m] = Xa(k) = X1(K)X2(k) (14)
m=0
~ 1N_1~ ~
%ln] = %y[nl%ln] = Xak) = & 5 Xa(NXa(k =) (15)
r=0
Parseval’s Relation for the DFT:
N-1 ) 1N—1 N )
S T =5 Y Xl (16)
n=0 k=0

Linear Convolution Using the DFT:

Let x,[n] be of length L, x,[n] of length M. Then x; = x; O X,isoflength L+M—-1. Pad
each of x,[n] and x,[n] with zeros so that each is of length N =2 L + M —1. Compute DFT'’s,
multiply point wise, IDFT and keeponly L+ M —1.

If one of the sequences is very long, it is decomposed into sections of appropriate size, convolved,
and the partial results combined according to one of the following two schemes:

Overlap-add:

Overlap-save:
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Computation of the DFT

Divide and Conquer Algorithms:

Matrix Multiplication:

Strassen Algorithm: Ax B = C, all nx n. Let n be even for the next step, power of two n = 2° for
the complete algorithm.

The first step is to divide each matrix into four g X g matrices as follows.

All A12 Bll 812 — Cll C12

1
A Ay [Bo1 Byl |C21C2 @
Instead of the eight g X g matrix multiplications, and four matrix additions needed in direct
computation of the entries of C, the following seven products are computed.
Py = (A +Ax)(Byg + By)) Pg = (A1 + A1) By 2
Py = (A +Ax)By Pg = (Ay1=A1)(Byg + By
P3 = A11(B1p=By)) P7 = (A1p=Ax)(By *+ By))

Ry,
N
I

Ajx(By1—Byy)
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Then C is computed in terms of additions of the P's.

C11 = ApB1a+ ApByy = P+ Py—Pg+ Py

Co1 = ApBy1 +AxpBy = Pr+ Py -
C1o = A11B1a+ ApByy = P3+ Pg

C11 = Ap1Brat AxpBoy = P+ P3—Py+ P

Instead of 8 multiplications and 4 additions of g X g , the algorithm requires 7 multiplications,
and18 additions of g X g matrices. Since multiplication of m x m matrices requires m° scalar
multiplications, and m3— m2 scalar additions, removing one matrix multiplications at the cost of

adding several matrix additions results in computation reduction for sufficiently large m.

So far we have applied divide and conquer only once. If the rest of the computation of the
submatrices is done by direct approach, and if we count a scalar multiply as approximately as
costly as a scalar add, as is the case in floating point arithmetic, then the break even point is for
n = 30, and the savings approach 1/8 of the regular approach as nincreases. But we can apply
the algorithm again and again to all the resulting submatrices as long as this results in savings.

If the algorithm is applied repeatedly until computation is completed, then the number of
multiplications and additions needed to compute the multiplication of 2" x 2" matrices, M(r) and
A(r) respectively, satisfy
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(4)
M(r +1) = 7TM(r), M) = 1,
Ar+1) = 7Ar)+18x 4, A0) =0
which has the solution, for n = 2°
log, 7.5 log,7
/VI(S) _ 78 _ (2092 ) _ nogz :n2.807’ (5)
I 7
A(s) = 6(7°=4%) = 6(n 2" —n?

Polynomial Multiplication:

Let P, and Q,, be polynomials of degree n-1 each, where n = 2°,

2 -1 2 _
P(X)Q,(X) = (Pg+ PyX +Pox  + .o +py (X NG+ QX+ X" + .o +q, X ) =

(6)




ECE 516 Lec 7 Viewgraph 4 of 9

[ " o g 1
+ + 2+ o 2 Op 42 + + +...+ 2 M
%70 pP1X +pyX~ +. pg_lx g+ X %39 pQ+1X ,_7+2x P 1 X0
N 2 O 02 2 2 [
M , g_lm gm g_m]]
o+ ayx + X" +... +q, X Hex“J,+a, XAy X H e, X =
M 2~ 0 03 3° 2" O
O Q [ n %
ED’-’ 7 P'l 2%9 L X 9,0
02 2" 2 2' 0
n
P Q, + ESD Q +P, Q B+ P_Q
= X X
n n n n n n
a1zt Uzl 32 32310 3232
] [ [ 0
Now the trick is to compute P, O, ,P, Q, ,©Q, -Q, 0P, -P, 0O,and
recognize that >l 2 v »2 23zl 32dUs52 510
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0 (1] 0
P, Q. +P, Q =00, -Q, OP, -P, O+P, Q, +P, Q
n n n n n n n n n n n n
21 2a 2a 21 zl 1 é) 2|:|]:| éa 2 zl 1|:| E) 1 éa 1 éa 2 §1 2

So, direct computation results in 4 multiplications and one additions of polynomials of degree
M_1. with algorithm, 3 multiplications and 4 additions. Repeated application results in

2 log.,3 |
3092 = n1°8 multiplications, and 24n > additions.
Decimation-in-Time FFT:
2TT N-=1
Vi nk
X(k)=X(e =~ ) = Z x[MW,  k=01..,N-1 (7)
n=0
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By separating the data at even and odd time indices, (decimation in time), we obtain

X(k) = X[ Wk & x[n]whk (8)
r7;;n N né%d N
N/72-1 o 1k kN/Z—l o 1k 5
X(k) = z x[2r](W) + W z x[2r+1](W)y) Wy = Wy, 9)
r=0 r=0
X(k) = G(k) + W H(K), k = 0,1, ..., N— (10)

N/2 point DFT’s

One N point DFT is replaced by two, N/2 point DFT’s at the cost of N multiplications, and N
additions. So the number of either additions or multiplications for a DFT of length 2' satisfies

1 ]

c2) = 2c@ " H+2 (11)

N _
Let C(2)) = A;, then

- / _
A =2A_,+2,A,=0 (12)

Which has the solution

A, = 2'Ay+y2' = Nlog,N (13)
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X[O] q G(0) N}___» X(0)
X[2] _ G(D) - WY X(1)
X[4 ~ G(2)~ WY X(2
X[6] - N/2 GBI /7.__> XE3§
XA | H(0) S| X(4)
X[3] H(1) ~ A X(5)
x&s_ “"N/2 H(2) " X7 X6
o= N2 TR
N
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Multidimensional Signals and DFT:
Impulse response hlkq, ko, ..., k] -

N-Dimensional convolution:
y[kl, k2, kn] = ZZ...Zh[kl—ll, k2—/2, kn—/n]x[ll, /2, In] (14)
1 2 n

/(k) = x(k) * h(k,

/(zl, Zoy ey zn) = X(zl, Zoy ey zn)H(zl, Zoy ey znj (15)
-k, -k -k
X(21, 29, . Z)) = Z;..Zx[kl, Ko nkplzy 'z, 2z, (16)
1 2 n

' ' ' —j(w.k k,+ ... k,

X' e’ €M) = ZZ...Zx[kl, Ko oo k] /AT OoK T T 0k, (17)
1 2 n
n-dimensional DFT of finite “length” signal is sampling of n-D F.T.

Ni—1N,-1 N,-1 _jondika foka o Tk

IjN_l N2 NnD
Xy lo o 1) = Z z Z x[kq ko, . kle (18)

k;,=0k,=0 k,=0
Many 1-D DFT’s.
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1-D FFT Derivation in Multidimensional Framework:

jatk N1 ~j2nk
X(ky=Xe ") = Z x[n]e k=01.. ,N-1 (19)
n=0

LetN = LM,anduse k = (/;+LI,); I, =01..,L-1 [, =0,1,..,M-1.,then

2 2 2
ML ikl —ifpkeh B T kihD
X(I;+Ll,) = Z e e i Z X[Mkq+k,le i (20)
k2 = O D(l = 0 D

Now define the LxM arrays )”([kl, ko] = X[Mkq + k)] ;5((/1, l5) = X(I +Ll,), then the 1-D DFT is
equivalent to:

1- M, L-point DFT’s along 1st dimension (?21;15([k1, k,].
—j57 11k
2- Multiplication of result of step 1 by e N ,/1 =01 ..L-1, k2 =01... M-1.

3- L, M-point DFT’s along 2nd dimension to finally obtain 5((/1, l5).

ForN = Ny xN,x...x N the costis C(N) = 27: 1(N/N,-)C(NI-) +(n—=1)N. For radix-2 FFT,

this becomes
NC(2)

2

c@™ = n2" " tcE) + (n-1)2" = Nlog,N + log ,N — N = Nlog ,N




ECE 516 Lec 8 Viewgraph 1 of 3

Filter Design Techniques

Design of Discrete-Time IR Filters from Continuous-Time Filters:

Bilinear Transformarion:

-1
— [l
s = 26—2-0 (1)
O +z 0
1+§
zZ=— (2)
1-3
2
Q = 2tan(w/2) (3)

Imaginary axis in s-plane maps onto unit circle in z-plane, left half plane onto unit disk.

Due to nonlinearity of map:

1- only for filters with piecewise constant magnitude response.

2- phase response is not critical.
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Given the specifications of the desired H(z), the specifications are mapped onto those of H (s),
which is then designed as a continuous-time filter, and then transformed via bilinear
transformation into desired digital filter.

Butterworth Filters:
Chebysheuv Filters:

Elliptic Filters:

A\ )
AN
A AN\

Chebyshev Polynomials
T, (x) for n =24 10,

T (%) = cos(ncos_lx) (4)

o) = LTy = X, Tox) = 2x° =1, T4(x) = 4x°—3x, T,(x) = 8x" —8x" +: (5)
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Relative Order of Digital Filters:

—10log ;010,15

Neir= T4AF
Let 3; = 3, = 0, then
_—20logd—-7.95_
Ner= —1z3mF >0
log .0
nBz—L5Aw
log .2
n~=-1.06——
¢ JAW

ng=0.3log 0 log Aw

+1

log .0
Aw

(6)

(7)

(8)

9)

(10)
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Types of Filters:
Minimum phase, Linear phase, and all pass. section 5.4 to end of Ch. 5.

Powers of z: Effect on impulse, frequency, and pole-zero locations. use in filter design and
multirate filtering.

Numerical Design Methods:

IR Filters:

Deczky’s Method: section 7.3

FIR Filters:

Windowing: section 7.4, 7.5.

Optimum Aproximation: section 7.6. Best mean-square error is just a rectangular-windowed
version of desired impulse response. Best min-max design (equiripple) via Parks-Mclellan
algorithms and the Remez exchange method.
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Computationally Efficient Digital Filter Structures

Structures Based on Periodicities and z-Powers:
Periodicities:

MFIR Filters:

Strutures Based on IIR Filters (made to behave as FIR):
MFIR:

Switching and Resetting:

Interpolation:
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Computationally Efficient Digital Filter Structures (contd.)

Discussion of papers:

[1] T. Saramaki, and A. Fam, “Subfilter Approach for Designing Computationally Efficient FIR Filkt8GAS-83
Espoo, Finland, pp. 2903 -2915, June 7-9, 1988.

[2] Adly T. Fam, “MFIR Filters: Properties and ApplicationEGEE Trans. Acoust., Speech, Signal ProcessiogASSP-
29, pp. 1128-1136, Dec. 1981.

[3] ZhongqiJing and Adly T. Fam, “A New Structure for Narrow Transition Band, Lowpass Digital Filter DeEigE&,”
Trans. Acoust., Speech, Signal Processin ASSP-32, pp. 362-370, Apr. 1984.

[4] A. Fam, “FIR Filters that Approach IIR Filters in their Computational Efficientweénty-first Annual Asilomar
Conference on Signals, Systems and CompWRarsfic Grove, California, pp. 28-30, Nov. 2-4, 1987.

[5] Tapio Sararéki and Adly T. Fam, “Properties and Structure of Linear-Phase FIR Filters Based on Switching and
Resetting of IIR Filters,"$CAS’90 New Orleans, Louisiana, pp. 3271-3274, May 1-3, 1990.

[6] Chimin Tsai and Adly T. Fam, “Efficient Linear-Phase Filters Based on Switching and Time ReV8GAR 90 New
Orleans, Louisiana, pp. 2161-2164, May 1-3, 1990.
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Optimal Partitioning and Redundancy Removal
In Computing Partial Sums

Discussion of concept as introduced in

[1] Adly T. Fam, “Optimal Partitioning and Redundancy Removal in Computing Partial SEBE"Trans. Computvol. C-
36, pp. 1137- 1143, Oct. 1987.

and related papers, and its applications to FIR filters as in

[2] Adly T. Fam, “Space-Time Duality in Digital Filter StructuredEE Trans. Acoust., Speech, Signal Processioly
ASSP-31, pp. 550-556, June 1983.

[8] A. Fam, “A Multi-Signal Bus Architecture for FIR Filters with Single Bit CoefficientSASSP-84San Diego, CA,
pp.11.11.1-11.11.3, March 19-21, 1984.
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