The above frequency-selective filtering is equivalent to the following operation in the time domain:

$$p(t) = \sum_{n=-\infty}^{\infty} p(n\Delta_t) \operatorname{sinc}\left[\frac{\pi(t-n\Delta_t)}{\Delta_t}\right].$$

This is called *reconstruction* or *interpolation* of the original signal from its delta-sampled signal.

The success of this operation hinges on the constraint

$$\omega_0 \leq \frac{2\pi}{2\Delta_t},$$

which is known as the *Nyquist* sampling criterion for aliasing-free or error-free reconstruction of p(t) from the sampled data $p(n\Delta_t)$'s. The linear harmonic components $P(\omega - \frac{2\pi n}{\Delta_t})$, $n = \pm 1, \pm 2, \ldots$ (or $n \neq 0$), result in aliasing if the Nyquist criterion is not satisfied.

The issue of sampling and its dual form, that is, sampling in the frequency domain, and aliasing-free processing and reconstruction from the sampled signal will be extensively encountered in array imaging systems.

1.3 DISCRETE FOURIER TRANSFORM

Let f(x) be a periodic signal composed of evenly spaced delta functions, for example,

$$f(x) = \sum_{\ell=-\infty}^{\infty} \sum_{n=-N/2}^{N/2-1} f_n \, \delta[x - (n+N\ell)\Delta_x],$$
One period

where Δ_x is the spacing between two consecutive delta functions and $N\Delta_x$ is the period (see Figure 1.7). This model provides a link between a discrete sequence and evenly spaced samples of a continuous signal [6]. Using the forward and inverse Fourier integrals, one can show that

$$F(k_x) = 2\pi \sum_{\ell=-\infty}^{\infty} \sum_{m=-N/2}^{N/2-1} F_m \ \delta[k_x - (m+N\ell)\Delta_{k_x}],$$

Depiction of a Discrete Fourier Transform Pair: The Spatial Domain Signal

Depiction of a Discrete Fourier Transform Pair: The Spatial Frequency Domain Signal

Figure 1.7 A discrete Fourier transform pair.

where

$$F_{m} = \sum_{n=-N/2}^{N/2-1} f_{n} \exp(-j\frac{2\pi}{N}mn)$$

$$f_{n} = \frac{1}{N} \sum_{m=-N/2}^{N/2-1} F_{m} \exp(j\frac{2\pi}{N}mn)$$
(1.1)

and

$$N \Delta_x \Delta_{k_x} = 2\pi. (1.2)$$

Equations (1.1) and (1.2) are called the Discrete Fourier Transform (DFT) equations. It should be noted $F(k_x)$ is also a periodic signal that is composed of evenly spaced delta functions (see Figure 1.7).

• In practice, we deal with continuous functions that are not band-limited in space/time and frequency domains. For storage and processing purposes in a computer, we represent (approximate) them via periodic functions that are made up of a finite number of evenly spaced delta functions (N sampled data). The main period of f(x) [or $F(k_x)$] is assumed to be the region in the x (or k_x) domain, for example, $x \in [-X_0, X_0)$ [or $k_x \in [-K_{x0}, K_{x0})$], where most, for example, 95 percent, of its energy is concentrated $(X_0$ and K_{x0} are known constants). $[-X_0, X_0)$ and $[-K_{x0}, K_{x0})$ are called the **effective** support bandwidths of f(x) and $F(k_x)$, respectively.

Noting the fact that

$$2X_0 = N \Delta_x$$

$$2K_{x0} = N \Delta k_x,$$

we can write from (1.2) the following equations that are the Nyquist sampling rate (constraint) for representing/recovering a lowpass signal from its sampled data:

$$\Delta_x = \frac{\pi}{K_{x0}}$$

$$\Delta_{k_x} = \frac{\pi}{X_0}.$$