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Discrete-Time Signals and Systems

Sequences:
X = {Xn]},—o<n<oeo ,ninteger. Sampling: x[n] = x,(nT), -0 <n<weo
. [D, n#0, _ 0 1, n=0,
Important Sequences:  unitsample 0[n] = [ ,unitstepu[n] =
M, n=0. 0, n<o.
Show that: u[n] = ZE:_wa[k] o ufnl = 37 3ln-K , and
d[n] = u[n] —u[n-1]
Also, the sifting1 property, X[n] = ZE: o X[K]O[n— K]
X[ n] is a linear combination of appropriately delayed unit samples.
Exponential and sinusoidal sequences: Xx[n] = Aan, X[n] = Aejwon, X[n] = Acos(wyn + @)
_ _ o p 1/p
Measure of asequence, Ip X[ n]||IO = ‘Zn:_m |x[ n]|
Energyofasequence: & = ||x||§

1. Similar to x(t) = J‘fw X(1)d(t —1)dT in continuous-time systems.

(1)

(2)

3)
(4)

(5)
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Linear Discrete-Time Systems:

x[n] yln]

L ) I

y[n] = T{x[nl}

Linear Systems:

Linear <

From x[n]

Let

Then

Superposition (= additivity + scaling or homogeneity)

T{ax[n] +bx;[n]} = aT{x[n]} +bT{x[n]}

= ZE: _JX[KI3[n—K] (4), and linearity (7):

Ml = TG} = TEy P dKeln-K 0= Y. dKT{3ln-K}

h[n] = T{3[n—Kl}

yln] = ZE: oo X[KIDy[N]

Causality: If x4[n] = X,[n] for n<ny, then x,[n] = x,[Nn] for n<n,.

Stability: BIBO iff every bounded input produces a bounded output

summable)

(6)

(7)

(8)
(9)

(10)

- z|hk[n]| O k, finite (bounded,
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Linear Time-Invariant Systems (LTI):
h[n] = h[n—K , h[n] = hy[n] (11)

Since T{d[n—-K]} = h[n-K] ,then y[n] = Zfz_mx[k]h[n— Kl = x[n] 5 h[n] (12)

\ Convolution Sum
y is the (discrete-time) convolution of x with A.
Show that convolution is commutative:
y[n] = Zfz_ooh[k]X[n—k] = h[n] x[n] = x[n] ; h[n]
Other Properties:
Parallel Combination (Connection): h[n] = h,[n] +h,[n],H = H,; +H,

Cascade Connection: h[n] = h, , = h, h;,H = HH,
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Frequency Domain Representation of Discrete-Time
Signals and Systems (Frequency Response)

jon

Let X[n] = e, -0 <n<o,then

Vil = Sr__hikxin-K = Sr__ hikge! "0 = NS nige " (13)
Define H(EY) = Sh- __h[KeT (14)
then yin] = HE9el®" (15)

e “"is an eigenfunction of the system. H(elw) Is its associated eigenvalue, and is called the frequency

response of the system. OF
H = Hg+jH, = [H¢

H is periodic in w with period 211, and hence has a Fourier series representation (17).Therefore

[ = =T HE e deo

Representation of Sequences by Fourier Transforms:

Any sequence, with suitable convergence conditions:
Inverse Fourier Transform X[n] = E-jz—lﬁaan(er)eJ “Ne : (16)

Fourier Transform X(ejw) = ZE= _X[K e_j wk (17)
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Frequency Response:

00

K= oo X[K]h[n—K] , Fourier transform of output is

From convolution (15), y[n] = Z

YED = S yine " = 3 S hin-KxKe " = ¥ XK S hin-Ke " =
> s

Zx[k]e_jwkz hin—Ke P70 = x( ) HE'? (18)
n

Symmetry Properties of the Fourier Transform:

Let x[n] = x,[n] +x,[n] , where

xelnl = S(x{n] + X1}, x,[n] = 3(xCni] - x-n)) (19)

Fourier Transform Theorems:

TABLE 1. Fourier Transform Theorems

Sequence Theorem  Fourier Transform

ax+ by Linearity aX+bY

x[n—ny] Time Shift e_jwn“X(ejw)
ej wonx[ nj Frequency Shift X(ej(w_wO))

X[—n] Time Reversal X(€e'?) | ifreal x the{e'®)
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nx[ n| Differentiation in Frequency j%X(ejw)
Xy Convolution XY
Xy Modulation or Windowing %{} X(ej e) Y(ei(w_e))de
-

00

n=—o

Parsevals Theorem

00

S Il = o= flxE@do, 3 xnydn = = xE@)YEedo

n=—oo
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Linear Constant-Coefficient Difference Equations

Nth-order linear constant-coefficient difference equation

N M N a M
= _ = _ Avin— L n=
Y aAn=K = 3 bxin-rl, yin == § ZYIn-K+ 3 n-1] (20)
k=0 r=0 k=1 r=0
Let ag = 1. Causality, initial conditions, stability, IR and FIR filters...
Ifa, = 0, I =1, 2 ..., N, then FIR filter, otherwise IIR.
Examples of Filters:
0l
Averaging Filter y[n] = %Z?’;éx[n—r] , h[n = ON’ OsnsN-1, (21)
Q 0 else
© joN s -2
joy _ - jon _ 10 -0 1 U2 RIS
HEe'™) = S h[nje Z ENBE NME = N mee (22)
n=-c sing,
. nd, |0 < W, - Sinw_..n
|deal Lowpass filter 1Y) = ! ¢ . h[n = ° 1e/"dw = ——2C (23)
, W, <|wl < n 211}, Tin

Digital Interpolator H(ejm) = e_jmT = Zh[n]e_jwn,0<r<l. Since h[n] = %TSLH(ejw)ejwndw , then

sinf(n—1) _ sintt n+l1_  sinmt n+1
m(n—1) _n(n—t)(_) _Trr(n/r—l)( b

h[n] = (24)
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Sampling of Continuous-Time Signals

Periodic (uniform) Sampling:

X[n] = x.(nT), —00 <N<00
Sampling Frequency: fe=1/T
() = J"" X (jQ)e!*'do X(jQ) = J'O_Oooxc(t)e_jmc
<[nl = _I " X(e)e!dw X% = Yo xke
X[n] = x(nT) = J"" X (j9)e!“"da = Zr__ooﬁz”i))((g%) X (jQ)e! " da=
ZHZY‘ —o0 T[/T c(JQ+121TTr) /"l *MMdq = '2—11_1 f/n/TT[Z:O (JQ+ngT—r)J ¢“"do

Let Q = —,then
T

_ 1 m il jw .21 Joon
x[nl = ZHI—H[TZr=—WXC(T T )} do
jo, _ 1o jow .21
XE€9) =257 X+
Nyquist Sampling Theorem:

If x(t) is bandlimited with X (jQ) = 0for [Q| > Q,, then x(t) is uniquely determined by its samples
X[n] = x(nT), n=0=L14+2 .., if Q. = (2m)/T >2Q,

(25)
(26)

(27)

(28)

(29)

(30)

(31)

(32)
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Reconstruction of a Bandlimited Signal from its Samples:

t —TnT)1 sinc(x) = SINTIX

X (t) = Zx[ n] sinc(

If x[n] = x(nT), and X (jQ) = 0for [Q] >Q,, then x.(t) = x(1).

Interpolation, Digital Interpolator HE®) = 19" = Z hinje '“" o<t<1

since h{r] = =7 He)e"do , then

sin(n—1) _ sintx n+1_  sinm n+1

h{n] = n(n—1) _n(n—T)(_) _Tl'[(n/'[—l)(_l)

Non-ldeal Sampling:

Example, averaging window:

- 1T
X[n] = EJ?nT_T)xC(t)dt

/T, 0<t<r,
Letr (t) = O
Y else

ThenX[n] = J‘joo r(nNT—xQ)dC

Leti(t) = [, rt=0x{QdZ, , thenX(jQ) = R(IQX(Q;

(33)

(34)

(35)

(36)

(37)

(38)

(39)
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:sin—QI —jg

e 2 , Group delay 1/2 (40)

where R (jQ) = ot
2

Discrete-Time Processing of Continuous-Time Signals:

If X.(1Q) is bandlimited, and the sampling rate is above the Nyquist rate, then

g} | | | OHE'™®), Ql <T/T,
Q) = Heg((DXIQ),  Hegi@) = gHE ) 1Ql<mwT (41)
[D, Q=TT
Examples of Filters:
Ideal Lowpass filter
. 1 | < w
] (o
1) = 0, o < (42)
: W, <l <
1, jon, sinw.n
h[n] = Znﬁwcle dw = — (43)

If input is samples of bandlimited signal, sampled above Nyquist rate, then after ideal D/A, system behaves
, 1QT| <w,, or, [Q| <w./1

asi_«(]Q) = 44
etf(1€) Elp QT[> w,, or, Q] >w./T (44)

Ideal Bandlimited Differentiator
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Impulse Invariance:

Given H (jQ) which is bandlimited, then to choose H(ejw) such that4 +(jQ) = H_ (jQ):

HE) = Hc(j%’), o <7, (45)

with the further requirement that T is chosen such thatH (jQ) = 0,(Q| > TV/T.
Then, h[n] = Th(nT), or impulse invariance. If H (jQ) is not bandlimited, then

HE'S) = 57 H AL+ ZE (46)

Frequency Scaling:
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The z-Transform

X(2 = Z‘::_m x[n]z " (47)

Letz = re!®, X(re!®) = Z:::_oo(x[n]r_n)e_j(*)n (48)

This is the Fourier transform of X[ n]r_n . Uniform convergence requires absolute summability. For

Z:: _OO|X[ n]r_n| <, this happens for R_< |7 < R,..

Replacing z by e!“in X(2) results in the Fourier transform of x[ n] , provided the unit circle is in the region of
convergence of the z-transform.

Uniform convergence of the z-transform, corresponds to uniform convergence of the corresponding Fourier
transform, for sequences defined for a range of rs.

Neither of

sinw_.n
X,[Nn] = nnc : X,[N] = coswyn, —c0o <N<oc (49)
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is absolutely summable for any r. Thus no z-transform. But x; has finite energy, for which the Fourier
transform converges in the mean-square sense to a discontinuous periodic function. The sequence X, is
neither absolutely nor square summable, but a Fourier transform using impulses is possible. The Fourier
transform is not continuous, infinitely differentiable functions in both cases, so they cannot result from
evaluating a z-transform on the unit circle, but we use a notion that implies this.

The z-transform is particularly useful when expressed in closed form, as in the case of rational functions

X(3 = g-% (50)
Examples:
exponential and unit step:
x[n] = a"u[n]. x@ = Yo " = Z‘:zo(az‘l)n (51)

: —1|Nn . —1
Convergence requires Z:_ 0‘az ‘ < oo, Which is true for ‘az ‘ <l,or|Z>|d.
In region of convergence

1

l-az

X(2 =

_z
;= 2 >4 (52)

The z- transform converges for any finite value of a, the Fourier transform only for |a|<1.

For a= 1, x[n] is unit step sequence with z-transform

X(2 = - 14>1 (53)
1-z
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Digital Filter Structures

Let

y[n] = ZE: 1aky[n—k]+er:0brx[n—r]
@ - 20 v
T

State Space Representation

Let M=N (discussion), express in powers of z, and isolate direct coupling:

Let state variable be the vector v(n) of dimension N. Then state space representation

/(n+1) = Av(n) + bx(n),
y(n) = cv(n) + dx(n)

(54)

(55)

(56)

(57)
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0 1 0..0 ol
0 0 1... 0 0
=/ 0 0 .0 1|b=|lc=|By_;1By_ B (58)
0
—GN _GN—l —Gl _]__
H@®@ = c(zl- A "b+d (59)
Oca" ™1 =
h[n] — DCA b, n 1, 2, s (60)
[d, n=20

Non-singular Transformations

Tv(n+1) = TAT “Tv(n) + Tbx(n),

L (61)
y(n) = ¢T “Tv(n) + dx(n)
Input and output invariant, but

V=1V
A= TAT

) 1 (62)
c=cT

b=Tb

By changing T, new structures are obtained that have different computational, roundoff, and coefficient
sensitivity properties. Changing T results in changing the basis in the state vector space in which the
system is represented.




ECE 416 Lec Viewgraph 16 of 35




ECE 416

Lec

Viewgraph 17 of 35

The Discrete Fourier Transform

Nt j%"nk
x[n] = N Z X(Ke :
k=0

N-1 2Tk

XK= 3 xnle N

n=0

z plane

21N

Finite and Periodic Sequences:

(63)

(64)
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N-1
X@ =3 nz " (65)
n=0
. N_l .
X@% = 3 e’ = ZW"k, K=01..N-1 (66)
n=0
S N-1 &
X(K=X(e ) = Z x[n]e ,k=01..,N-1 (67)
n=0
jg-[[k N-1
X(K=Xe ) = S X[WHSK = 0,1, ...,N—1 (68)
n=0
N-1
XN ==5% XxWW™n=01., N-1 (69)
N Z ’ L B .
k=0
Constructing X(2 from Frequency Samples for Finite Sequences:
N-1 N-1_ N-1 -
X@ = S x[nz" = % XYWz (70)
2,007 2O

n=0
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— _NN-=-1
1-z7V 17N X(K)

XKy (Wi X(K =
Z ()Z( z ® ~wilzt N Smwt

Infinite Sequences:

[e¢]

X(2 = z x[n]z "

n=—oo
Let
XW=X@| =Y XWXk = 0,1,...N—1
Tk
Z=e€ n = —oo
~1
The inverse DFT of X(k) is X[n] , defined by X[n] = % Z X(k)W_nk, n=201.. N-=1,resultingin
k=0
1N—1 ) 1N—1 0 ’ y k( )D
-n —Kn n-m
qnj =5 F x®W =2y Y XMWy Wy = x[m]% Z Wy 0
k=0 k=0m= - m——°°
N 1 m n+rN N le&kS - é[t) ot?e:rvrvl:lse
) = - l
Using Z W n=m) 5" , as shown M e 11wt -
N O,else for s# rN;NZWN =3 =0
k=0 k=0 1-Wy

then ~_

z1

(71)

(72)

(73)

(74)
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X[n] = Z Xx[n+ rN]

r=—oo

So, X is an aliased version of X.

Properties of the DFS/DFT:

Linearity:  Xg[n] = ax;[n] +bx,[n] = X5(k) = aX;(k) +bX,(K).

Both x; and x, are periodic of same period, or finite of same length.

. . ~ ~ ~ —Km=
Circular Shift: X([n] = X[n+m] <= Xi(k) = Wy mX(k)
Circular (Periodic) Convolution:
N-1
Xgln] = 5 K[mixln—m] = Xak) = X3(K)Xo(K
m=0
lN—1
X3[n] = X [n[n] < X3(kK) = S Z X1(r)Xa(k=r)
r=0

Parseval’'s Relation for the DFT:

N-1 ) 1N—1 )
S Kt =5 S X
n=0 k=0

Linear Convolution Using the DFT:

(75)

(76)

(77)

(78)
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Let x,[n] be of length L, x,[n] of length M. Then x5 = x; O X,isoflength L + M —1. Pad each of x,[n]
and x,[n] with zeros so that each is of length N> L + M —1. Compute DFT’s, multiply point wise, IDFT and
keeponly L+M —1.

If one of the sequences is very long, it is decomposed into sections of appropriate size, convolved, and the
partial results combined according to one of the following two schemes:

Overlap-add:

Overlap-save:
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Computation of the DFT

Divide and Conquer Algorithms:

Matrix Multiplication:

Strassen Algorithm:  AxB = C all nx n. Let n be even for the next step, power of two n = 2° for the
complete algorithm.

The first step is to divide each matrix into four D % matrices as follows.

2 2
A A.||B., B C., C..
11 A1 |B11 Bigl _ |C11 Cyg (79)
Ax1 Agol [Bog Byy  1Cyq Cyy

Instead of the eight g X g matrix multiplications, and four matrix additions needed in direct computation of
the entries of C, the following seven products are computed.

P1 = (AT Ag)(Byg +Byy) Pg = (A1t A12)Byo (80)
Py = (At Ay)Byy Pe = (Ay3—A11)(B11+By))
Py = A11(B15—By)) Pz = (A12—A)(Byy +By))

Py = Ayp(Byy —Byy)

Then C is computed in terms of additions of the P's.
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c11 = A11B11 T AoBog = PP, =P+ P
Co1 = ApBiitAyByy = P+ Py 1)
Ci2 = A11B1pt AppByy = P3+ Py

11 = ApBiot AyoByy = P+ P3—P,y + P

Instead of 8 multlpllcatlons and 4 additions of é X é the algorithm requires 7 multlpllcatlons andl18
addltlons of 2x 2 matrices. Since multiplication of mx m matrices requires m° scalar multiplications, and
m° —m" scalar additions, removing one matrix multiplications at the cost of adding several matrix additions
results in computation reduction for sufficiently large m.

So far we have applied divide and conquer only once. If the rest of the computation of the submatrices is
done by direct approach, and if we count a scalar multiply as approximately as costly as a scalar add, as is
the case in floating point arithmetic, then the break even point is for n = 30, and the savings approach 1/8 of
the regular approach as nincreases. But we can apply the algorithm again and again to all the resulting
submatrices as long as this results in savings.

If the algorithm is applied repeatedly until computation is completed, then the number of multiplications and
additions needed to compute the multiplication of 2" x 2 matrices, M(r) and A(r) respectively, satisfy

(82)
which has the solution, for n = 2S
log,7.S log,7
M(S) _ 7s _ (2092 ) _ n092 =n2'807,
| 7 (83)
(0]
A9 = 6(7°-4% = 6(n 2 —n°)
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M(r +1) = 7M(r),
A(r+1) = 7A(r) +18x 4,

Polynomial Multiplication:

M() = 1,
A(0) = 0

Let P, and Q. be polynomials of degree n-1 each, where n = 2°

2 -1 2 1
PL(0Qu (0 = (Pg+ PyX+ PoX + oo # P _ X )(Ug+ QX+ X" + .o 4G X ) =

[ N0 g
+ + 2+ + 2 Ly 2 +
%’0 Py X+ PoX + ... pn_lx ot X BJD P
(1 2 ] ]2 2
[ N0 g
+q,X+ x2+ + x2 D+x2%q +
o+ X+ G+ vy X0 gExX T, ay
M 2 O O2 2
O g uN g B
= %DD 1+X Pn 2%39 1+X Qn o0
2 2’7 2 2" [

N1
X+p, XA 4p X =
n n-—
o+l 5+2 =
01
x+q. Xo+.. +q. x> O
N,o n-1 1]
2 [

(84)
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[] O n
=P, Q, +x ™, Q, +P, Q. +x P, Q
n n n n n n n n
>1 51 Dé,l 52 3?2 §,1D 52 52
o [] OO [ _
Now the trick is to compute P, Q. ,P, Q, ,@Q, -Q, 0P, —P, O ,andrecognize that
é,l E,l §,2 §,2 |:| é,l E,ZDD §,2 éll:l
P, Q, +P, Q. =[O Q EIF]D P, +P, Q, +P, Q
n n n n n., <n n, 'n n n n n
>1 32 52 31 Dél é,2E|]]§,2 §1D >1 31 52 32

So, direct computation results in 4 multiplications and one additions of polynomials of degree 2— 1. With

log,3
algorithm, 3 multiplications and 4 additions. Repeated application results in 3n 92° < n1'58 multiplications,
0 "
and 24n 22 additions.

Decimation-in-Time FFT:

X(k)=X(e ) = Z x[NWy,k=01..,N-1 (85)
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LetN = 2y, and notice that W, = e N implies

N N SN
0 _ 2 _ 4 _ . N
Ny = LWG = LWy = -, Wy = j,Wy = Wy, .
XW= Y X[]Wh + X[ W (86)
n even n odd
N/2-1 5 Tk kN/Z—l 5 Tk 5
X0 =Y )W) rWy S K2 H LW L Wy = Wy, (87)
r=0 r=0
X(K) = G(K +WyH®K), k = 0,1, ...,N-1 (88)

N/2 point DFT'’s
One N point DFT is replaced by two, N/2 point DFT’s at the cost of N multiplications, and N additions. So the
number of either additions or multiplications for a DFT of length 2' satisfies

1 I

c2) = 2c2' ") +2 (89)

LetC(2') = A, then

— I —
A =2A _,+2,A,=0 (90)

Which has the solution

A\, = 2'A,+y2" = Nlog,N (91)
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Multidimensional Signals and DFT:

Impulse response h[kq, ks, ..., K] .

N-Dimensional convolution:

YIKy, Koy ooy K] = ZZ...Zh[kl—ll, Ky =1y oo Ky =1 IX[ g, 1, -

y(k) = x(k) * h(k)

Y(zl, Zy, ey zn) = X(zl, Zy, ..., Z )H(zl, Zy, ey zn)

—K, —k —

X(z), 2y, ... 2,) = ZZ...Zx[kl, Ky ko lzy 2y .2,
1 2 n

—j (WK + ok, +

X(elwl, erZ, “_1ejwn) = ;ng[kl’ k21 seey kn]e
1 2 n

n-dimensional DFT of finite “length” signal is sampling of n-D E.T.

N,—1N,—1 N, —1 _jondzke, Ko

ON, ™ N,
X(plpl) = 505 0 3 Xk ko kyle

k,=0k,=0 k,=0
Many 1-D DFT's.

1-D FFT Derivation in Multidimensional Framework:

kn

otk

(92)

(93)

(94)

(95)

(96)

(97)
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Jg-[[k N-1 —j=nk

X(K=Xe V) = S xrle N k=01..,N-1 (98)

LetN = LM, and use k = (I1+LI2); I1 =01..L-1; I2 =01..,M-1., then

M-1 —jmkzlz _j2T k2| DL 1 —JTkll O
X(I +LI,) = e e DZ x[ Mk, +k,]e 5 (99)
k,=0 k, =0 O

Now define the LxM arrays >~<[k1, ky] = X[Mk; +k,] ;5((I 1 15) = X(I; +LI,), then the 1-D DFT is equivalent
to:

1- M, L-point DFT’s along 1st dimension gf x[kl, K>] .

—J_I ky
2- Multiplication of result of step 1 by e N 1, =01..L-1,k, =01 .., M-1.
3- L, M-point DFT’s along 2nd dimension to finally obtain )~((I 1 19)-

ForN = N; x N, x ... x N, the costis C(N) = Z:”: 1(N/ N,)C(N,) + (n—1)N . For radix-2 FFT, this
becomes

c@" = n2""*c(@) + (n-1)2" = Nlog,N + N(;(Z)

log,N —N = Nlog,N
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Filter Design Techniques

Design of Discrete-Time IIR Filters from Continuous-Time Filters:

Bilinear Transformarion:

—Z
s=2 70 (100)
4+z°0
1+ g
z = (101)
1_S
2
Q = 2tan(w/2) (202)

Imaginary axis in s-plane maps onto unit circle in z-plane, left half plane onto unit disk.
Due to nonlinearity of map:

1- only for filters with piecewise constant magnitude response.

2- phase response is not critical.

Given the specifications of the desired H(2), the specifications are mapped onto those of H (s), which is
then designed as a continuous-time filter, and then transformed via bilinear transformation into desired
digital filter.

Butterworth Filters:

Chebyshev Filters:
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Elliptic Filters:

A\ )
N o a
AL

Chebyshev Polynomials
T,(x) for n =24 10,

T (X = cos(ncos_lx) (103)

2 3 4 2
[ = L Ti(¥) = X Ty(X) =2X =1, T4(X) = 4x —=3% T4(X) = 8x —8x +] (104)

Relative Order of Digital Filters:

NFir= 14AF

+1 (105)

Let 61 = 62 = 9, then

N . =2000g3—7.95_ , J09e0
FIR™ ™14 360F R

(106)
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ng=-1.5 ey (207)

0 log 0 (108)

N~=-1.06—— 108
c JAW

ng = 0.3logd log Aw (109)

Types of Filters:

Minimum phase, Linear phase, and all pass. section 5.4 to end of Ch. 5.

Powers of z: Effect on impulse, frequency, and pole-zero locations. use in filter design and multirate filtering.

Numerical Design Methods:

IR Filters:

Deczky’s Method: section 7.3

FIR Filters:

Windowing: section 7.4, 7.5.

Optimum Aproximation: section 7.6. Best mean-square error is just a rectangular-windowed version of
desired impulse response. Best min-max design (equiripple) via Parks-Mclellan algorithms and the Remez

exchange method.
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Computationally Efficient Digital Filter Structures

Structures Based on Periodicities and z-Powers:
Periodicities:

MFIR Filters:

Strutures Based on IIR Filters (made to behave as FIR):
MFIR:

Switching and Resetting:

Interpolation:
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Optimal Partitioning and Redundancy Removal
in Computing Partial Sums

Discussion of concept as introduced in

[1] Adly T. Fam, “Optimal Partitioning and Redundancy Removal in Computing Partial SEEE Trans. Computvol. C-36, pp. 1137-
1143, Oct. 1987.

and related papers, and its applications to FIR filters as in

[2] Adly T. Fam, “Space-Time Duality in Digital Filter StructuredEE Trans. Acoust., Speech, Signal Processialg ASSP-31, pp.
550-556, June 1983.

[8] A. Fam, “A Multi-Signal Bus Architecture for FIR Filters with Single Bit CoefficienlfSASSP-84San Diego, CA, pp. 11.11.1-
11.11.3, March 19-21, 1984.




