HW\#2 Solutions

1.21 $P[x \leqslant \alpha]=\int_{-\infty}^{\alpha^{+}} f(x) d x$ $\begin{aligned} f(x) & =0.2 \delta(x+2)\end{aligned}+0.3 \delta(x)+0.2 \delta(x-1)+0.1[u(x-3)-u(x-6]$

(a) $P[x \leq-3]=\int_{-\infty}^{-3} f(x) d x=0$
(b) $P[x \leq 1.5]=\int_{-\infty}^{1.5} f(x) d x=\int_{-\infty}^{1.5}[0.2 \delta(x+2)+0.3 \delta(x)+0.2 \delta(x-1)$
$=0.2+0.3+0.2=0.7$
(c) $P[x \leqslant 4]=\int_{-\infty}^{4} f(x) d x$
$=0.2+0.3+0.2+0.1 \int_{3}^{4} d x$
$=0.2+0.3+0.2+0.1=0.8$
(d) $P[x \leq 6]=\int_{-\infty}^{6} f(x) d x$
$=0.2+0.3+0.2+0.1 \int_{3}^{6} d x$
$=0.2+0.3+0.2+0.3=1$
2.1 c, d, f ---- Please refer to HW\#1 solutions.

