Problem Set 2 PS2 due Friday May 19

PS2-1 A thermodynamic system undergoes a cycle consisting of four processes according the data in the following table. The units are Btu. Determine the missing units in the table and also determine whether the cycle is a power or a refrigeration cycle.

Process	U	KE	PE	Е	Q, heat	W, work
	change	change	change	change		
1-2	72	-5	-6		0	
2-3	64	0			90	
3-4	-97		0			92
4-1		0	3			0

PS2-2

Is the following cycle, which consists of three processes, a power cycle or a refrigeration cycle? Sketch a pressure-volume and temperature-entropy property diagram of the cycle.

- 1) a compression process with p V= constant, with no change in internal energy, from p=1 bar, V= 1.6 m^3 to V= $.2 \text{ m}^3$
- 2) a constant pressure process to V=1.6 m³
- 3) a constant volume process with an internal energy change of -3549 kJ

PS2-3 For refrigerant R-134a complete the following table.

Temperature, C	pressure, kPa	volume, m ³ /kg	phase
-8	500		
30		.022	
	320		saturated vapor
100	600		

PS1-1

Cycle Definition:

$$\sum_{\text{cycle}} \Delta U = 0, \quad \sum_{\text{cycle}} \Delta KE = 0, \quad \sum_{\text{cycle}} \Delta PE = 0, \quad \sum_{\text{cycle}} \Delta E = 0$$

$$\Delta E_{process} = \Delta U + \Delta KE + \Delta PE$$

First Law for a Process:

$$Q = \Delta E + W$$

First Law for a Cycle:

$$\oint \delta Q = \oint \delta W$$

PS1-1

54 Btu is added to the system and 54 Btu of work is done. The cycle is a power cycle.

$$\begin{split} &\sum_{cycle} \Delta U = 0, \quad \sum_{cycle} \Delta KE = 0, \quad \sum_{cycle} \Delta PE = 0 \\ &\Delta E_{process} = \Delta U + \Delta KE + \Delta PE \\ &Check: \sum_{cycle} \Delta E = 0 \\ &First \ Law \ for \ a \ Process \quad Q = \Delta U + W \end{split}$$

First Law for a Cycle $\oint \delta Q = \oint \delta W$

$$Q = \Delta E + W$$

$$(Q \text{ added } +, W \text{ done } +)$$

$$W = \int p dv$$

$$\int E = 0$$

$$\text{cycle}$$

$$W_{31} = \int pdv = \int p0 = 0$$

 $Q_{31} = \Delta E_{31} + W_{31}$
 $Q_{31} = -3549 \text{ kJ heat rejected}$

$$E_{12} + E_{23} + E_{31} = 0$$

$$0 + E_{23} - 3549 = 0$$

$$E_{23} = +3549 \text{ kJ}$$

$$\begin{aligned} Q_{23} &= \Delta E_{23} + W_{23} \\ W_{23} &= \int p dv = p_2 (V_3 - V_1) \\ p_1 v_1 &= p_2 v_2 \\ p_2 &= p_1 \frac{v_1}{v_1} = 100 \text{ kPa} \times 1.6/1.2 = 800 \text{ kPa} \\ W_{23} &= 800 \times (1.6 - .2) = +1120 \text{ kPam}^3, \text{kJ} \\ Q_{23} &= 3549 + 1120 = +4669 \end{aligned}$$

$$pv = C$$

$$p_1v_1 = C$$

$$p = \frac{p_1v_1}{v}$$

$$\begin{split} W_{12} &= \int p dv \\ W_{12} &= p_1 v_1 \int \frac{dv}{v} = p_1 v_1 ln \left(\frac{V_2}{V_1} \right) \\ W_{12} &= 100 \text{ kPa} \times 1.6 \text{ m}^3 \times ln \left(\frac{.2}{1.6} \right) \\ W_{12} &= 1600 \times -2.097 = -327.7 \text{ kPam}^2 \text{ or kJ} \\ E_{12} &= 0 \\ Q_{12} &= 0 + W_{12} = -327.7 \text{ kJ} \end{split}$$

$$\begin{array}{ll} W_{12} - 327.3 & Q_{12} = -327.7 \\ W_{23} = +1120 & Q_{23} = +4669 \\ W_{31} = 0 & Q_{31} = -3549 \\ & +792.3 & = & +792.3 \\ \int W = \int Q & & & \\ \end{array}$$

Net Heat added Net Work done ⇒ PowerCycle

PS2-3 For refrigerant R-134a complete the following table.

Temperature, C	pressure, kPa	volume, m ³ /kg	phase
-8	500	(.0007569)	(compressed liquid)
30	(770.06)	.022	(saturated mixture)
(2.46)	320	(.0632)	saturated vapor
100	600	(.04790)	(superheated vapor)