Basics of Microbiology chemical nature of life types of cells cell structure and function

Prokaryotic

Eukaryotic

Bacteria and Protozoa

Floc and Protruding Filaments

Ciliated Protozoan

Filamentous Algae

Chemical Nature of Life

Chemical Composition of *E. coli*

Element	% Dry Wt
С	50
Ο	20
Ν	14
Н	8
Р	3
S, K, Na, Ca, Mg, Cl, Fe	4.5
Others	0.3

What do we use for Cell Composition?

- Simple formula based on typical cell composition,
 - $C_5H_7O_2N$ MW = 113
 - Should recognize this is a "typical" value that is no more than a representative number
- Alternative to include phosphorus

• $C_{60}H_{87}O_{23}N_{12}P$ MW = 1374

Functional Groups

- Carbon is a primary element in cellular life
- Carbon may be oxidized or reduced
- These reactions give rise to different functional groups that are important in cellular chemistry. As examples
 - amino acids
 - alcohols
 - DNA, RNA

Polymeric Nature of Cellular Structure

- Many of the cells components are constructed of polymeric units
- Cell walls, membranes, storage products, DNA, RNA, enzymes, etc. are all polymers made from a predetermined set of monomers
- The four primary polymers of interest are:

Polymeric Structures

- Lipids: glycerol and fatty acids
- Polysaccharides: carbohydrates
- Proteins: amino acids
- RNA and DNA: nucleotides

Lipids

- Soluble in non-polar solvents
- Found primarily in cell membranes
- Found in many industrial wastestreams
- Lipids can be classified as Simple or Complex
- An important component of simple lipids are short chain fatty acids which are important intermediates in anaerobic metabolism leading to methane formation

Carbohydrates

- general group of compounds (C_nH_{2n}O_n)
- found in all cells, structural or storage
- most prevalent form of organic matter in biosphere
- basic component of diet (>50%)
- present in large amounts in domestic and industrial wastes

Pentose Sugars

Complex Sugars: Polysaccharides

Carbohydrate Polymers

Amino Acids

- Sequences of amino acids make proteins (peptide bond)
- All amino acids have an amine group and a carboxyl group
- There are approximately 20 different amino acids found in natural proteins
- Amino acids classified based on their hydrophobicity

Proteins

- Proteins most abudent matter in cell
- Typically 30 70% as dry wt.
- All contain C H N O
- Some contain S which contributes to structure
- Proteins contribute to nitrogen loadings in treatment plants
- Found in a variety of wastewaters

Protein Function

- Biological Catalyst (Enzyme)
 - oxidoreductases
 - transferases
 - hydrolases
 - lyases
 - isomerases
- Contractile proteins
- Transport proteins
- Glycoproteins

Nucleotides

- Informational polymer for cell heredity (RNA, DNA)
- Energy carriers (adenosine disphosphate and adenosine triphosphate)
 ATP + H₂0 → ADP + PO₄ + energy

Electron carriers (nicotinamide adenine dinucleotide)
 NAD⁺ + 2e⁻ + 2H⁺ → NADH + H⁺ (NADH₂)

Basic Structure of Nucleotides

- Phosphoric Acid
- Ribose or Deoxyribose sugar
- Nitrogenous base

Nitrogenous Bases

DNA (double strand)

- Purine bases
 - Adenine
 - Guanine
- Pyrimidine bases
 - Thymine
 - Cytosine
- A/T
- G/C

RNA (single strand)

- Purine bases
 - Adenine
 - Guanine
- Pyrimidine bases
 - Uracil
 - Cytosine

Structure of ATP

Microorganisms Types

- Basic microorganisms of interest are
 - Bacteria
 - Algae
 - Protozoa
 - Fungi
- Bacteria are Prokaryotic organisms
- Algae, Protozoa, and Fungi are Eukaryotic organisms

Microorganism Classification

	Prokaryotic	Eukaryotic
Macroorganisms	None known	Eukarya: Animals Plants
Microorganisms	Archaea	Eukarya: Algae
	Bacteria	Fungi Protozoa

Prokaryotic Organism Structure

Eukaryotic Organism Structure

Microorganism Classification

	Prokaryotic	Eukaryotic
Size	very small,	bigger,
	1 - 5 _µ m long	2 - 100 _µ m Iong
Nuclear Structure Mone Single DNA molecule	well define nucleus	
	molecule	Several chromosomes
Internal Structures	none, other than storage	many, membrane bound

Prokaryotic Bacteria

- Two Prokaryotic kingdoms
- Archaea: includes those bacteria that have traits typically associated with harsh environments

examples included halophyles, thermophyles, methanogens,

 Bacteria: includes a variety of bacteria including most "typical" groups

Bacteria and Archaea

- prokaryotic bacteria (Bacteria and Archaea) are nutritionally diverse
- assimilate soluble substrates which are either soluble initially or have been solubilized by exocellular enzymes
- live in anaerobic and aerobic environments
- key component of the decomposers
- disease

Prokaryotic Organisms Classified by Metabolic requirements

- autotrophic (CO₂) and heterotrophic (organics) for cell carbon
- chemotrophic (chemical)and phototrophic (light) for energy
 - oxidize inorganics for energy (chemolithotrophs)
 - oxidize organics for energy (chemoorganotrophs)
Prokaryotic Organisms Also Classified by Shape

Algae

- microscopic and macroscopic
- microscopic (single cell/filamentous)
- most are obligate photoautotrophs
- characterized by:
 - nature of chlorophylls
 - carbon reserves or storage
 - motility
 - cell wall structure

Protozoa

- unicellular Eukaryotic organism which lack cell wall
- chemoorganoheterotrophs
- typically fulfill nutritional needs by grazing
- Grazing on bacteria is an important process in producing clear effluents in biological treatment plants

Protozoa Continued

- often parasitic
 - Giardia
 - Cryptosporidium
- often motile, means of motility is used to classify
 - flagella
 - cilia

Fungi

- lack chlorophyll
- are chemoorganoheterotrophs
- most are obligates aerobes
- structure often characterized by long filaments called hyphae
- grow well under low nutrient and acidic conditions

Fungi, Continued

- because they grow well under adverse conditions and form filaments, they are often problematic in wastewater treatment plants where settling is important
- play major role in nutrient cycling in soil and aquatic environments

Biological Structure and Function

All cells need:

- capture and excretion of nutrients and wasteproducts
- protection from environment
- metabolic conversion of nutrients
- preservation and replication of genetic information

Capture of Nutrients: Cytoplasmic Membrane

- Thin structure that completely encloses cell
- Selective to regulate nutrient and waste flow
- Phospholipid bilayer structure
 - hydrophilic phosphoric head
 - hydrophobic lipid tail
 - hydrophobic interactions give stability to membrane

Phospholipid Bilayer of Membrane

protein

Protection from the Environment: Cell Wall

- Structural Protection
- In Eukarya, cell wall constructed of
 - cellulose (fungi, algae, plants)
 - chitin (fungi)
 - silica (diatoms)
 - polysaccharides (yeasts)
- Prokaryotic and Archaea (different amounts of peptidoglycan
 - Gram + versus Gram -

Additional Cell Structures Related to Protection

- Flagella
- Cilia
- Gylcocalyx (capsule or slime layer)
- Fimbriae

Flagella

- Flagella provide means to move towards or away from chemicals (chemotaxis), light (phototaxis), or oxygen (aerotaxis)
- From an ecological view, chemotaxis provides a competitive advantage in environments
- Organisms can have a single polar flagella (montrichous), a tuft of flagella (lophotrichous), or many (peritrichous)

Chemotaxis

- Chemotaxis consists of runs (nearly straight) and tumbles (random redirection)
- Runs are longer when bacteria move in favorable direction
- Response based on relative change, not absolute concentration

Chemotaxis

Other Movement Strategies

- Eukaryotic cells also move by cilia
- Cilia are shorter and more numerous than flagella
- Paramecia move by cilia
- Amoebae move by cytoplasmic streaming (amoeboid movement)

Survival in Low Nutrient Conditions

- Organisms growth in low nutrient waters is limited by supply of nutrients
- Rather than move around to capture nutrients, organisms in these environments fix themselves in place and let nutrients come to them
- Thus attachment mechanisms are important

Gylcocalyx

 capsule or slime layer is comprised of a polysaccharide and protein matrix

Gylcocalyx Function

- Attachment to surfaces
- Protection from desiccation
- Microbial flocculation
- Metal complexation
- Protection from phagocytosis
- Pathogen virulence

Other External Appendages

 Fimbriae: attachment mechanisms

Eukaryotic Organelles for Metabolism

- Mitochondria: site of cellular respiration, contains enzymes for aerobic energy production
- Chloroplasts: large organelles for energy production in photosynthetic organisms

Microbial Replication

- For growth to occur, DNA must be replicated before cell division
- As reported, DNA is a double stranded macromolecule consisting of a sugarphosphate backbone and purine or pyrimidine bases
- The double strands are linked by hydrogen bonding between base (T-A) and (G-C)

DNA Structure (Simple)

TTTGTTAATGAGCATCTT AAACAATTACTCGTAGAA

- Base pair hydrogen bonding between adenine and thymine
- Base pair hydrogen bonding between guanine and cytosine

DNA Replication (Simple)

TTTGTTAATGAGCATCTT AAACAATTACTCGTAGAA

TTTGTTAATCAGCATCTT AAACAATTACTCGTAGAA

Protein Synthesis

- All information needed for protein synthesis is located on DNA
- However, this information can not be used directly
- Ribonucleic acid (RNA) is used as an intermediate to take information from DNA to make proteins
- The RNA used for this transcription is called messenger RNA (mRNA)

Translation in Protein Synthesis

- The specific sequence of amino acid in each protein is directed by the specific sequences of purine or pyrimidine bases in mRNA
- Proteins are synthesized by translating the mRNA base sequence in a system consisting of ribosomes, transfer RNA (tRNA), and a number of enzymes.
- The translation of each amino acid requires three bases (codon) in mRNA

Diagram of Translation

Prokaryotic Genetic Material

- Single circular strand of DNA supercoiled to fit in cell
- Plasmid: extrachromosomal DNA, smaller units of non-essential DNA
 - Conjugative plasmids (DNA exchange)
 - Resistance plasmids (antibiotics, metals)
 - Catabolic plasmids (degradation of unusual, nonessential substrates, PAHs, PCBs, chlorophenols, etc.

Plasmid Transfer from Cell to Cell

 important in virus reception and DNA transfer (conjugation: transfer through cell to cell contact)

Eukaryotic Genetic Material

- Eukaryotic cells have a distinct nucleus surrounded by a nuclear membrane which has very small pores to allow the exchange of material between the nucleus and cytoplasm.
- DNA is present as multiple chromosomes
- Nucleolus: an area rich in RNA, site of ribosomal RNA synthesis

Other Eukaryotic Organelles

- In Eukaryotic organisms the locations of mRNA and protein synthesis are separated by the nuclear membrane characteristic of Eukaryotic organisms
- Endoplasmic Reticulum: folded membrane system which forms channels through cytoplasm. Attached to both cytoplasmic membrane and nuclear membrane. Houses ribosomes for protein synthesis.

Storage Products in Cells

- Carbon storage polymers
- Phosphate storage
- Sulfur storage

Carbon Storage

- Carbon storage as glycogen, starch, polyhydroxybutyric acid (PHB)
- PHB is very important in the biological removal of phosphorus

Phosphorus and Sulfur Storage

- Polyphosphate granules, storage of energy increased phosphorus uptake over stoichiometric needs
- Sulfur granules, elemental sulfur used as an energy source in sulfur filamentous bacteria

Gas Vacuoles

- Gas vacuoles found in prokaryotic organisms, both Bacteria and Archaea
- Cyanobacteria and other photosynthetic bacteria float because of gas vacuoles and form massive blooms at water surface.
- Allows photosynthetic organisms to "float" to optimal light intensity

Endospores

- Form inside bacteria cells
- Physical and chemical agents trigger spore formation
- Spores are very resistant to heat, chemicals, desiccation, very difficult to kill

