Self-Centering
Earthquake Resisting Systems
Andre Filiatrault, Ph.D., Eng.

CONTENT
1. Introduction
2. Behaviour of Self-centering Systems
3. Dynamic Response of MDOF Self-centering Systems
4. Ancient Applications of Self-centering Systems
5. Early Modern Applications of Self-centering Systems
6. Shape Memory Alloys
7. The Energy Dissipating Restraint (EDR)
8. Self-centering Dampers Using Ring Springs
9. Post-tensioned Frame and Wall Systems
10. Considerations for the Seismic Design of Self-centering Systems

1. Introduction
• With current design approaches, most structural systems are designed to respond beyond the elastic limit and eventually to develop a mechanism involving ductile inelastic response in specific regions of the structural system while maintaining a stable global response and avoiding loss of life
• Resilient communities expect buildings to survive a moderately strong earthquake with no disturbance to business operation
• Repairs requiring downtime may no longer be tolerated in small and moderately strong events
1. Introduction

• Current Seismic Design Philosophy
 – Performance of a structure typically assessed based on maximum deformations.
 – Most structures designed according to current codes will sustain residual deformations in the event of a design basis earthquake (DBE).
 – Residual deformations can result in partial or total loss of a building:
 • static incipient collapse is reached
 • structure appears unsafe to occupants
 • response of the system to a subsequent earthquake or aftershock is impaired by the new at rest position
 – Residual deformations can result in increased cost of repair or replacement of nonstructural elements.
 – Residual deformations not explicitly reflected in current performance assessment approaches.
 – Framework for including residual deformations in performance-based seismic design and assessment proposed by Christopoulos et al. (2003).
 – Chapter presents structural self-centering systems possessing characteristics that minimize residual deformations and are economically viable alternatives to current lateral force resisting systems.

2. Behaviour of Self-centering Systems

• Optimal earthquake-resistant system should:
 – Incorporate nonlinear characteristics of yielding or hysteretically damped structures: limiting seismic forces and provide additional damping.
 – Have self-centering properties: allowing structural system to return to, or near to, original position after an earthquake.
 – Reduce or eliminate cumulative damage to main structural elements.
2. Behaviour of Self-centering Systems

![Idealized Seismic Response of Self-Centering Structure](from Chryssopoulos 2002)

3. Dynamic Response of MDOF Self-centering Systems

- Response of 3, 6, 10-storey Steel Frames
- Self-centering Frames with Post-Tensioned Energy Dissipating (PTED) Connections vs. Welded Moment Resisting Frames (WMRF)
- Beam and Column Sections designed according to UBC 97 for a Seismic Zone 4 (Los Angeles)
- Special MRF, assuming non-degrading idealized behavior for welded MRFs
- A992 Steel, with RBS connections
- Hinging of beams and P-M interaction included
- 2% viscous damping assigned to 1st and (N-1)th modes
- 6 historical ground motions scaled to match code spectrum
- 20 second zero acceleration pad at end of records

3. Dynamic Response of MDOF Self-centering Systems

![Schematic Diagram](CIE500D "Introduction to Graduate Research in Structural Engineering"

3. Dynamic Response of MDOF Self-centering Systems

![Schematic Diagram](CIE500D "Introduction to Graduate Research in Structural Engineering"
3. Dynamic Response of MDOF Self-centering Systems

- Response of 3-Storey Frames to LP3 Record (0.5 g)
3. Dynamic Response of MDOF Self-centering Systems

- Response of 6-Storey Frames to LP3 Record (0.5 g)

- Response of 10-Storey Frames to LP3 Record (0.5 g)

- Response of 6-Storey Frames to Ensemble of 6 Records

PTED Frames:
- similar maximum drifts as WMRFs (for all records)
- limited residual drift at base columns unlike welded frame
- similar maximum accelerations as WMRFs (for all records)
3. Dynamic Response of MDOF Self-centering Systems
- Explicit Consideration of Residual Deformations in Performance-Based Seismic Design (see Section 2.3.3)

4. Ancient Applications of Self-centering Systems

Figure 7.27 Ancient Greek Temples a) General View and b) Segmented Column

5. Early Modern Applications of Self-centering Systems
- South Rangitikei River Railroad Bridge, New Zealand, built in 1981
- Piers: 70 m tall, six spans prestressed concrete hollow-box girder, overall span: 315 m
- Rocking of piers combined with energy dissipation devices (torsional dampers)
- Gravity provides self-centering force
6. Shape Memory Alloys

- **Superelasticity**
 - Shape Memory Alloys (SMAs): class of materials able to develop superelastic behaviour
 - SMAs are made of two or three different metals
 - Nitinol: 49% of Nickel and 51% of Titanium.
 - Copper and zinc can also be alloyed to produce superelastic properties.
 - Depending on temperature of alloying, several molecular rearrangements of crystalline structure of alloy are possible
 - Low alloying temperatures: martensitic microstructure
 - High alloying temperatures austenitic microstructure

Figure 7.20 SMAs Hysteresis Behaviour:

a) Low Alloying Temperatures
![Graph](image1.png)

b) High Alloying Temperatures
![Graph](image2.png)

Figure 7.30 SMAs Superelastic Behaviour for Intermediate Alloying Temperatures
![Graph](image3.png)
6. Shape Memory Alloys

• Superelasticity
 – Advantages for supplemental damping purposes:
 • Exhibits high stiffness and strength for small strains
 • It becomes more flexible for larger strains.
 • Practically no residual strain and
 • Dissipate energy
 – Disadvantages:
 • Sensitive to fatigue: after large number of loading cycles, SMAs deteriorate into classical plastic behaviour with residual strains
 • Cost

• Experimental Studies
 – Aiken et al. (1992):
 • Studied experimentally the use of Nitinol as energy dissipating element
 • Shake table tests a small-scale 3-storey steel frame

![Figure 7.3a: Three-Storey Test Frame Used for Shake Table Studies of Nitinol](image)

![Figure 7.3b: Inclined Load-Displacement Graph of Nitinol Wires](image)
6. Shape Memory Alloys

• Experimental Studies
 – Aiken et al. (1992):
 • With no preload, wires lose at the end of testing.
 • With a small preload, difficult to achieve uniform response in all braces.
 • Large preload applied to Nitinol wires in subsequent seismic tests.
 • Axial strain in wires cycled between 2.5% and 6.0% during tests.
 • Nitinol continuously cycled in of martensite phase.
 • Steel-like hysteresis behaviour with maximum energy dissipation.
 • Self-centering capabilities of the Nitinol lost.

![Graph showing hysteresis loops for Nitinol wires.](image)

Figure 6.1 Hysteresis Loops for All Nitinol Braces (Aiken et al., 1992).

![Graph showing effect of Nitinol braces on seismic response.](image)

Figure 6.2 Effect of Nitinol Braces on the Seismic Response of Test Frame – Zaratula Ground Motion, Shale: Nitinol Welded Perforated, Dome: Nitinol Welded Perforated, Bar: Perforated (from Aiken et al., 1992, reprinted with the permission of the New Zealand Society for Earthquake Engineering).
6. Shape Memory Alloys

- Experimental Studies
 - Witting and Cozzarelli (1992):
 - Shake table tests on 2/5-scale steel frame incorporating Cu-Zn-Al SMA dampers installed as diagonal braces
 - SMA dampers configured as a torsion bar system

- Experimental Studies
 - Ocel et al. (2004):
 - Investigated cyclic behaviour of steel beam-column connections incorporating Nitinol rods
 - Four Nitinol rods in martensitic phase incorporated as axial elements in connection to dissipate energy
6. Shape Memory Alloys

- Experimental Studies
 - Ocel et al. (2004):
 - Nitinol rods re-heated above alloying temperature
 - Re-generate austenitic microstructure and recover initial shape
 - Rods heated for 8 minutes at 300°C and ¾ of permanent deformations recovered

- Structural Implementations
 - Seismic retrofit of historical San Giorgio bell tower, Italy
 - Damaged after 1996 Modena and Reggio earthquake
 - Nitinol wires introduced and prestressed through masonry walls of bell tower to prevent tensile stresses
6. Shape Memory Alloys
• Structural Implementations
 – Seismic rehabilitation of Upper Basilica di San Francesco in Assisi, Italy
 • Damaged by the 1997-98 Marche and Umbria earthquakes
 • Nitinol wires used in post-tensioning rods

7. The Energy Dissipating Restraint (EDR)
• Hysteretic Behaviour
 – Manufactured by Fluor Daniel, Inc.
 – Originally developed for support of piping systems
 – Principal components:
 • internal spring, steel compression wedges, bronze friction wedges, stops at both ends of internal spring, external cylinder
7. The Energy Dissipating Restraint (EDR)

- Hysteretic Behaviour

![Hysteretic Behaviour Diagram]

Figure 7.4a: Hysteretic Loops for Various Configurations of EDR from Nino et al. (1993), reproduced with the permission of the Earthquake Engineering Research Institute.

7. The Energy Dissipating Restraint (EDR)

- Experimental Studies
 - Aiken et al. (1993):
 - Same three storey steel frame as for SMA damper tests

![Experimental Studies Photo]

Figure 7.4b: Test Frame with EDR (from Aiken et al. 1993, reproduced with the permission of the Earthquake Engineering Research Institute.)

7. The Energy Dissipating Restraint (EDR)

- Experimental Studies
 - Aiken et al. (1993):
 - EDR with various configurations

![Experimental Studies Diagrams]
8. Self-centering Dampers Using Ring Springs

- Description of Ring Springs (Friction Springs)
 - Outer and inner stainless steel rings with tapered mating surfaces
 - When spring column loaded in compression, axial displacement and sliding of rings on conical friction surfaces
 - Outer rings subjected to circumferential tension (hoop stress)
 - Inner rings experience compression
 - Special lubricant applied to tapered surfaces
 - Small amount of pre-compression applied to align rings axially as column stack
 - Flag-shaped hysteresis in compression only

8. Self-centering Dampers Using Ring Springs

- SHAPIA Damper
 - Manufactured by Spectrum Engineering, Canada
 - Ring spring stack restrained at ends by cup flanges
 - Tension and compression in damper induces compression in ring spring stack: symmetric flag-shaped hysteresis

8. Self-centering Dampers Using Ring Springs

- Experimental Studies with SHAPIA Damper
 - 200-kN capacity prototype damper
 - Characterization Tests
8. Self-centering Dampers Using Ring Springs

- Experimental Studies with SHAPIA Damper
 - Characterization Tests

![Characterization Tests](image_url)

- Shake Table Tests
 - Single-story moment-resisting plane frame: height of 1.8 m and bay width of 2.9 m
 - Column base was linked to pin base. Weight simulated by four concrete blocks (30 kN each) linked horizontally to upper beam
 - Concrete blocks were supported vertically by a peripheral pinned gravity frame
 - Test frame carry only the lateral inertia forces
 - Lateral load resistance provided by MRF and bracing member

![Shake Table Tests](image_url)
8. Self-centering Dampers Using Ring Springs
- Experimental Studies with SHAPIA Damper
 – Shake Table Tests

9. Post-tensioned Frame and Wall Systems
- Concrete Frames
 – PRESSS (PREcast Seismic Structural Systems) program
 • Use of unbonded post-tensioning elements to develop self-centering hybrid precast concrete building systems
9. Post-tensioned Frame and Wall Systems

- Concrete Frames
 - PRESSS (PREcast Seismic Structural Systems) program

9. Post-tensioned Frame and Wall Systems

- Concrete Frames
 - PRESSS (PREcast Seismic Structural Systems) program

![Figure 7.23 Hybrid Connection of Five-Story PRESSS Building: (a) Photo at 4% Drift Ratio and (b) Force-Displacement Response (courtesy of S. Panzarino)]

Figure 7.23 Hybrid Connection of Five-Story PRESSS Building: (a) Photo at 4% Drift Ratio and (b) Force-Displacement Response (courtesy of S. Panzarino)

- Hysteretic Characteristics of Post-Tensioned Energy Dissipating (PTED) Connections

 - Self-centering conditions: $M_a = (k_3 - k_1)P_0$
 - k_3: Post-yield axial stiffness of ED elements
 - k_1: Elastic axial stiffness of ED elements
 - θ_a: Gap opening angle at first yield of ED elements

![Figure 7.24 Self-centering Connections: (a) Generalized Post-Tensioned Connection and (b) Details of Diaphragm and End Connection]

Figure 7.24 Self-centering Connections: (a) Generalized Post-Tensioned Connection and (b) Details of Diaphragm and End Connection
9. Post-tensioned Frame and Wall Systems
• Sectional Analysis of PTED Connections

- Construct complete moment-rotation relationship of connection by increasing θ and computing the corresponding moment
- Separate PT and ED contributions

9. Post-tensioned Frame and Wall Systems
• Cyclic Modelling of PTED Connections with Equivalent Nonlinear Rotational Springs
9. Post-tensioned Frame and Wall Systems

• Extension of PTED Model to Constrained Beams

- Model Accounting for Beam Depth

- Larger number of springs
- Fiber elements for gap opening and for beam shear carrying
- Pre-stressed triaxial elements
9. Post-tensioned Frame and Wall Systems

• Concrete Walls
 – Post-Tensioned Rocking Wall System (Stanton et al. 1993)

Extent of damage at 6% drift
9. Post-tensioned Frame and Wall Systems
• Self-centering Systems for Confined Masonry Walls

9. Post-tensioned Frame and Wall Systems
• Self-centering Systems for Confined Masonry Walls

9. Post-tensioned Frame and Wall Systems
• Self-Centering Systems for Steel Structures
 – Hybrid Post-Tensioned Connection (Ricles et al. 2001)

Figure 7.65 Hybrid Post-Tensioned Connection for Steel Frames (after Ricles et al. 2001)
9. Post-tensioned Frame and Wall Systems

• Self-Centering Systems for Steel Structures
 – PTED Connection (Christopoulos et al. 2002a, 2002b)

9. Post-tensioned Frame and Wall Systems

• Self-Centering Systems for Bridges

9. Post-tensioned Frame and Wall Systems

• Self-Centering Systems for Bridges
10. Considerations for the Seismic Design of Self-centering Systems

- If adequate amount of energy dissipation capacity provided to self-centering systems ($\beta = 0.75$ to 0.90), maximum displacement similar to traditional systems of similar initial stiffness.
- General design approach for self-centering systems:
 - Derive lateral design forces for an equivalent traditional system
 - Transform traditional system into self-centering system with equal strength at the target design drift
 - Design self-centering system for similar initial stiffness to traditional system with $\beta = 0.75$ to 0.90.

![Figure 5.70 General Design Approach for Self-Centering Systems](image-url)

Questions/Discussions