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1. Introduction

» With current design approaches, most structural
systems are designed to respond beyond the elastic
limit and eventually to develop a mechanism
involving ductile inelastic response in specific
regions of the structural system while maintaining
a stable global response and avoiding loss of life

 Resilient communities expect buildings to survive
a moderately strong earthquake with no
disturbance to business operation

« Repairs requiring downtime may no longer be
tolerated in small and moderately strong events
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1. Introduction

e Current Seismic Design
Philosophy

Figure 7.1 Idealized Seismic Response of Yielding Structure (from Christopoulos
002)
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1. Introduction

« Current Seismic Design Philosophy
— Performance of a structure typically assessed based on maximum
deformations
Most structures designed according to current codes will sustain residual
deformations in the event of a design basis earthquake (DBE)
- Residual deformations can result in partial or total loss of a building:
« static incipient collapse is reached
* structure appears unsafe to occupants
« response of the system to a subsequent earthquake or aftershock is impaired by
the new at rest position
Residual deformations can result in increased cost of repair or replacement
of nonstructural elements
— Residual deformations not explicitly reflected in current performance
assessment approaches.
~ Framework for including residual deformations in performance-based
seismic design and assessment proposed by Christopoulos et al. (2003)
Chapter presents structural self-centering systems possessing .
characteristics that minimize residual deformations and are economically
viable alternatives to current lateral force resisting systems
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2. Behavior of Self-centering Systems

 Optimal earthquake-resistant system should:

— Incorporate nonlinear characteristics of yielding
or hysteretically damped structures: limiting
seismic forces and provide additional damping

— Have self-centering properties: allowing
structural system to return to, or near to, original
position after an earthquake

— Reduce or eliminate cumulative damage to main
structural elements.
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2. Behavior of Self-centerina Systems
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Figure 7.2 Idealized Seismic Response of Self-Centering Structure (from
Christopoulos 2002)
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3. Dynamic Response of
MDOF Self-centering Systems

* Response of 3, 6, 10-storey Steel Frames

« Self-centering Frames with Post-Tensioned Energy Dissipating
(PTED) Connections vs. Welded Moment Resisting Frames (WMRF)

« Beam and Column Sections designed according to UBC 97 for a
Seismic Zone 4 (Los Angeles)

* Special MRF, assuming non-degrading idealized behavior for welded
MRFs

* A992 Steel, with RBS connections

« Hinging of beams and P-M interaction included

* 2% viscous damping assigned to 1st and (N-1)th modes

« 6 historical ground motions scaled to match code spectrum
« 20 second zero acceleration pad at end of records
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3. Dynamic Response of
MDOF Self-centering Systems
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3. Dynamic Response of
MDOF Self-centering Systems
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3. Dynamic Response of
MDOF Self-centering Systems
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3. Dynamic Response of
MDOF Self-centering Systems
* Response of 3-Storey Frames to LP3 Record (0.5 g)
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3. Dynamic Response of
MDOF Self-centering Systems
» Response of 6-Storey Frames to LP3 Record (0.5 g)
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3. Dynamic Response of
MDOF Self-centering Systems
» Response of 10-Storey Frames to LP3 Record (0.5 g)
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3. Dynamic Response of
MDOF Self-centering Systems

» Response of 6-Storey Frames to Ensemble of 6 Records

‘Response Index CM2 LAN2 LP3 NOR3 NOR9 SUP3 |MEAN|
Maximum Drift  MRF 162 232 191 126 150 201 | 177
) PTED 152 177 170 129 145 183 1.59
Residual Dift  MRF 007 018 037 005 018 052 | 023
) PTED 000 013 002 000 002 005 | 004
Maximum MRE 085 086 08 079 077 097 | 086
Acceleration () PTED 079 080 075 065 060 079 | 0.73
Input Energy MRF 14990 27670 11110 9134 8456 12460 | 13970
(kips.in) PTED 6514 18455 8401 5953 6382 10985 | 9450
Hysteretic Energy MRF 7282 17710 5481 2150 2761 7613 | 7166
(kips.in) PTED 645 2904 1049 263 384 1847 | u82

e PTED Frames :
— similar maximum drifts as WMREFs (for all records)
— limited residual drift at base columns unlike welded frame
— similar maximum accelerations as WMRFs (for all records)
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3. Dynamic Response of
MDOF Self-centering Systems

 Explicit Consideration of Residual Deformations in
Performance-Based Seismic Design (see Section 2.3.3)
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4. Ancient Applications of
Self-centering Systems

) 5

. e e
Figure 7.27 Ancient Greek Temple: a) General View and b) Segmental Column
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5. Early Modern Applications of
Self-centering Systems
P 4

» South Rangitikei River Railroad
Bridge, New Zealand, built in 1981
Piers: 70 m tall, six spans prestressed
concrete hollow-box girder, overall
span: 315 m

Rocking of piers combined with
energy dissipation devices (torsional
dampers)

™+ Gravity provides self-centering force
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tﬁ in Structural Engineering”




6. Shape Memory Alloys

* Superelasticity
— Shape Memory Alloys (SMAs): class of materials able to develop
superelastic Behavior
— SMAs are made of two or three different metals
« Nitinol: 49% of Nickel and 51% of Titanium.

— Copper and zinc can also be alloyed to produce superelastic
properties.

— Depending on temperature of alloying, several molecular
rearrangements of crystalline structure of alloy are possible

- Low alloying temperatures: martensitic microstructure
- High alloying temperatures austenitic microstructure
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6. Shape Memory Alloys

e Superelasticity

) Low Alloying Temperature b) High Alloviag Temperasuze
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Figure 7.29 SMAs Hysteretic Behavious: a) for Low Alloying Temperatures and
b) for High Alloying Temperatures
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6. Shape Memory Alloys
* Superelasticity
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Figuze 7.30 SMAs Superelastic Behaviour for Intermediate Alloying

Temperatures
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6. Shape Memory Alloys

* Superelasticity

— Advantages for supplemental damping purposes:
« Exhibits high stiffness and strength for small strains N -
« It becomes more flexible for larger strains. P
« Practically no residual strain and Y E—— -
« Dissipate energy Vs

- Disadvantages: :

« Sensitive to fatigue: after large number of loading cycles, SMAs deteriorate
into classical plastic Behavior with residual strains
« Cost
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6. Shape Memory Alloys

e Experimental Studies
— Aiken et al. (1992):
« Studied experimentally the use of Nitinol as energy dissipating element

« Shake table tests a small-scale 3-storey steel frame

Figure .31 Theee-Stosey Teut P
SMIA {afier A
CIE500D *“Introduction to Graduate Research
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6. Shape Memory Alloys

» Experimental Studies
— Aiken et al. (1992):
« Nitinol wires incorporated at each end of the cross braces
« Nitinol loaded in tension only
« No preload in Nitinol wires for initial shake table tests
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6. Shape Memory Alloys

» Experimental Studies
— Aiken et al. (1992):
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Figure 7.31 Effect of Nitinol Braces on the Seismie Reaponse of Tear Frar
Zacarla Ground Mortion, Solid: MNitinol Without Preload, Dored: Nitinol With
Preload, Dot-Dash: Bare Frame (from Aiken et al. 1992, reproduced with the

permission of the Mew Zealand Sociery for Eacthquake Engineering)
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6. Shape Memory Alloys

e Experimental Studies
- Witting and Cozzarelli (1992):

« Shake table tests on 2/5-scale steel frame incorporating Cu-Zn-Al SMA
dampers installed as diagonal braces

« SMA dampers configured as a torsion bar system

Figure 7.5 Five-Starey Test Stricture (after Cluang et al. 1993}
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6. Shape Memory Alloys

» Experimental Studies

— Ocel et al. (2004):
« Investigated cyclic Behavior of steel beam-column connections
incorporating Nitinol rods
« Four Nitinol rods in martensitic phase incorporated as axial elements in
connection to dissipate energy
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6. Shape Memory Alloys

» Experimental Studies
— Ocel et al. (2004):
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Figure 7.39 Hysteretic Response of a Steel Bram-Column Connection
Incorporating Nitinal Bars {fram Ocel et al. 2004, repraduced with the
permission of the American Society of Civil Engineers)
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6. Shape Memory Alloys

« Experimental Studies

— Ocel et al. (2004):
« Nitinol rods re-heated above alloying temperature
« Re-generate austenitic microstructure and recover initial shape

« Rods heated for 8 minutes at 300°C and ¥ of permanent
deformations recovered
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6. Shape Memory Alloys

« Structural Implementations

— Seismic retrofit of historical San Giorgio bell tower, Italy
« Damaged after 1996 Modena and Reggio earthquake

« Nitinol wires introduced and prestressed through masonry walls
of bell tower to prevent tensile stresses
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6. Shape Memory Alloys

Structural Implementations

— Seismic rehabilitation of Upper Basilica di San Francesco
in Assisi, Italy

» Damaged by the 1997-98 Marche and Umbria earthquakes

« Nitinol wires used in post-tensioning rods
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7. The Energy Dissipating Restraint (EDR)

Hysteretic Behavior

— Manufactured by Fluor Daniel, Inc.

— Originally developed for support of piping systems
— Principal components:

« internal spring, steel compression wedges, bronze friction
wedges, stops at both ends of internal spring, external cylinder
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7. The Energy Dissipating Restraint (EDR)
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7. The Energy Dissipating Restraint (EDR)
 Hysteretic Behavior
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7. The Energy Dissipating Restraint (EDR)

» Experimental Studies
— Aiken et al. (1993):
« Same three storey steel frame as for SMA damper tests

Figuore 7.42 Test Frame with EDR (from Aiken et al. 1993, reproduced with the
pesmission of the Earthquake Engineering R 1 inute)
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7. The Energy Dissipating Restraint (EDR)

 Experimental Studies
— Aiken et al. (1993):
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8. Self-centering Dampers Using Ring Springs

« Description of Ring Springs (Friction Springs)
— Outer and inner stainless steel rings with tapered mating surfaces

— When spring column loaded in compression, axial displacement and sliding of
rings on conical friction surfaces

— Outer rings subjected to circumferential tension (hoop stress)

— Inner rings experience compression

— Special lubricant applied to tapered surfaces

— Small amount of pre-compression applied to align rings axially as column stack

— Flag-shaped hysteresis in compression only
Before Loading Afer Loading

Compression

Force, F
Outer Ring  Inr

=

Half Ring

B

Axial Displacement

Figure 7.44 Ring Spring Details (after Filiateanlt ot al. 2000)
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8. Self-centering Dampers Using Ring Springs
« SHAPIA Damper
— Manufactured by Spectrum Engineering, Canada
— Ring spring stack restrained at ends by cup flanges

— Tension and compression in damper induces compression
in ring spring stack: symmetric flag-shaped hysteresis

Sliding Sleeve .,
.,

- Friction Springs
Py

/ hY gl 3
Leftcun? Tic Bar Right Cup
Figure 7.45 200-kN SHAPIA Dunper Prototype (after Filiatrault et al. 2000)
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8. Self-centering Dampers Using Ring Springs

 Experimental Studies with SHAPIA Damper
— Characterization Tests
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8. Self-centering Dampers Using Ring Springs

» Experimental Studies with SHAPIA Damper
— Characterization Tests

Figure 7.47 Frequesncy Dependency of SHAPTA Damper Properties (after
Filiatrault et al. 2000)
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8. Self-centering Dampers Using Ring Springs

« Experimental Studies with SHAPIA Damper
— Shake Table Tests
« Single-storey moment-resisting plane frame: height of 1.8 m and bay width of 2.9 m

« Column base was linked to pin base Weight simulated by four concrete blocks (30
kN each) linked horizontally to upper beam

« Concrete blocks were supported vertically by peripheral pinned gravity frame
« Test frame carry only the lateral inertia forces
« Lateral load resistance provided by MRF and bracing member

8. Self-centering Dampers Using Ring Springs

 Experimental Studies with SHAPIA Damper
— Shake Table Tests
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9. Post-tensioned Frame and Wall Systems

» Concrete Frames

— PRESSS (PREcast Seismic Structural Systems) program

 Use of unbonded post-tensioning elements to develop self-
centering hybrid precast concrete building systems

Figure 7.50 Hybrid Frame System (afier Stanton and Nakal 2002)
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9. Post-tensioned Frame and Wall Systems

« Concrete Frames
— PRESSS (PREcast Seismic Structural Systems) program

9. Post-tensioned Frame and Wall Systems

« Concrete Frames
— PRESSS (PREcast Seismic Structural Systems) program

b

Top Displament (mm)

Figure 7.53 Hybrid C ion of Five-Storey PRESSS Building: a) Photo at 4%
Drift Ratio and b) Farce-Deflection Response (courtesy of 5. Pampanin)
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9. Post-tensioned Frame and Wall Systems

* Hysteretic Characteristics of Post-Tensioned Energy
Dissipating (PTED) Connections , .. ..

— Self-centering conditions: Az, = (k, - ks)8; -
k, = Elastic axial stiffness of ED elements ofw ww "t
k; = Post-yield axial stiffness of ED elements g
65 = Gap opening angle at first yield of ED elements

(textbook p. 256-262) i

yeseyg ey

9. Post-tensioned Frame and Wall Systems

« Sectional Analysis of PTED Connections
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9. Post-tensioned Frame and Wall Systems

« Sectional Analysis of PTED Connections

— Construct complete moment-rotation relationship of
connection by increasing 6 and computing the
corresponding moment

— Separate PT and ED contributions
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9. Post-tensioned Frame and Wall Systems

* Cyclic Modelling of PTED Connections with
Equivalent Nonlinear Rotational Springs
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9. Post-tensioned Frame and Wall Systems

» Extension of PTED Model to Constrained Beams
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9. Post-tensioned Frame and Wall Systems

» Extension of PTED Model to Constrained Beams
— Model Accounting for Beam Depth

d link Beam-Column
—‘ Rigid links element

e
Pre-stressed
Truss element

Compression only B | !

—w— ED bar spring

o Shear carried
through slaved

nodes — g

 Larger number
of springs

« Fiber elements
for gap opening

and for beam CIE500D “Introduction to Graduate Research 51
té in Structural Engineering”




9. Post-tensioned Frame and Wall Systems

 Extension of PTED Model to Constrained Beams
— Model Accounting for Beam Depth

T Spring e

Contact (CT) Spring
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9. Post-tensioned Frame and Wall Systems

» Concrete Walls
— Post-Tensioned Rocking Wall System

(Stanton et al. 1993)

P endom
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9. Post-tensioned Frame and Wall Systems

* Concrete Walls
— Jointed Cantilever Wall System (Restrepo 2002)

CIE500D “Intreduction to Graduate Research
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9. Post-tensioned Frame and Wall Systems

* Concrete Walls
— Jointed Cantilever Wall System (Restrepo 2002)

Extent of damage at 6% drift
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9. Post-tensioned Frame and Wall Systems

« Self-centering Systems for Confined Masonry Walls
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9. Post-tensioned Frame and Wall Systems

« Self-centering Systems for Confined Masonry Walls
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9. Post-tensioned Frame and Wall Systems

« Self-Centering Systems for Steel Structures
— Hybrid Post-Tensioned Connection (Ricles et al. 2001)

Ahim plale

"
/I'I strands
If . P stranids
[ . ~ reinforcing plate
Nungle

I
unchoruge

Figure 7.65 Hybrid Past-Tensioned Connection for Steel Frames (after Ricles et
al. 2001)
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9. Post-tensioned Frame and Wall Systems

« Self-Centering Systems for Steel Structures
— PTED Connection (Christopoulos et al. 2002a, 2002b)

Figure 7.66 PTED Connee cti
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teel Frames (feam Christopon

9. Post-tensioned Frame and Wall Systems

« Self-Centering Systems for Steel Structures
— PTED Connection (Christopoulos et al. 2002a, 2002b)

| -

]
T —f -
‘ |
Y S E——
CIE500D “Introduction to Graduate Researct
Ié in Structural Engineering” T

20



11. Post-tensioned Frame and Wall Systems
. Shake table testing of PTED frame (Wang and Filiatrault 2008)
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11. Post-tensioned Frame and Wall Systems

« Self-Centering Systems for Steel Structures
— Friction Damped PT Frame (Kim and Christopoulos 2008)

— ED bars replaced by Friction Energy Dissipating (FED)
connections made of Non Asbestos Organic (NAO) brake

lining pads on stainless steel E .....
s E

<__f
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11. Post-tensioned Frame and Wall Systems

« Self-Centering Systems for Steel Structures

— Self-Centering Energy Dissipating Bracing System
(Christopoulos et al. 2008)

— Two bracing members, tensioning system, energy

dissipating system, gmdlng elements e :
vl:m-l ‘Nf:: ‘ ' e ¥ < | ('. " ..'I
(D] il :
Z ]~ LT T f
s .i"! ¥
P ) N e [
mmmbery tendons. r 22 M .
b =———
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11. Post-tensioned Frame and Wall Systems

* Application to wood structures
— Beam-to-column subassemblies using Laminated
Veneer Lumber (LVL)
— Unbonded post-tensioned tendons and either
external or internal energy dissipaters

Palermo, A, Pampanin, ., Fragiacomo, M., Buchanan,
AH. and Deam, B.L. (2006) Innovive Seismic Solutions
for Multi-Storey LVL Timber Buildings. Portiand, OR
USA: 9th World Conference on Timber Engineering
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9. Post-tensioned Frame and Wall Systems
« Self-Centering Systems for Bridges

Hybrid System
- _-_rJ_—_|

=

Figure 7.69 Concept of Hybrid System Applied to Bridge Piers (after Palerma et
al. 2005)
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10. Considerations for the Seismic Design of
Self-centering Systems

« If adequate amount of energy dissipation capacity provided to self-centering systems
(B =0.75 to 0.90), maximum displacement similar to traditional systems of similar
initial stiffness

« General design approach for self-centering systems:

— Derive lateral design forces for an equivalent traditional system
— Transform traditional system into self-centering system with equal strength at the target

design drift
— Design self-centering system for similar initial stiffness to traditional system with
p=0751t00.90 3ase Shear
Trad tioaal

/ Yielding Sysiem

Self-Centering
System

| ! Fsplacenent
Targes
Design Drift

F5= =g’
i .

Figurc 7.70 General Design Approach for Sclf-Centering Systems
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