Introduction to Self-Centering Earthquake Resisting Systems

Andre Filiatrault, Ph.D., Eng.

CONTENT

1. Introduction
2. Behavior of Self-centering Systems
3. Dynamic Response of MDOF Self-centering Systems
4. Ancient Applications of Self-centering Systems
5. Early Modern Applications of Self-centering Systems
6. Shape Memory Alloys
7. The Energy Dissipating Restraint (EDR)
8. Self-centering Dampers Using Ring Springs
9. Post-tensioned Frame and Wall Systems
10. Considerations for the Seismic Design of Self-centering Systems

1. Introduction

- With current design approaches, most structural systems are designed to respond beyond the elastic limit and eventually to develop a mechanism involving ductile inelastic response in specific regions of the structural system while maintaining a stable global response and avoiding loss of life
- Resilient communities expect buildings to survive a moderately strong earthquake with no disturbance to business operation
- Repairs requiring downtime may no longer be tolerated in small and moderately strong events
1. Introduction

• Current Seismic Design Philosophy
 – Performance of a structure typically assessed based on maximum deformations
 – Most structures designed according to current codes will sustain residual deformations in the event of a design basis earthquake (DBE)
 – Residual deformations can result in partial or total loss of a building:
 • static incipient collapse is reached
 • structure appears unsafe to occupants
 • response of the system to a subsequent earthquake or aftershock is impeded by the new at rest position
 – Residual deformations can result in increased cost of repair or replacement of nonstructural elements
 – Residual deformations not explicitly reflected in current performance assessment approaches.
 – Framework for including residual deformations in performance-based seismic design and assessment proposed by Christopoulos et al. (2003)
 – Chapter presents structural self-centering systems possessing characteristics that minimize residual deformations and are economically viable alternatives to current lateral force resisting systems

2. Behavior of Self-centering Systems

• Optimal earthquake-resistant system should:
 – Incorporate nonlinear characteristics of yielding or hysteretically damped structures: limiting seismic forces and provide additional damping
 – Have self-centering properties: allowing structural system to return to, or near to, original position after an earthquake
 – Reduce or eliminate cumulative damage to main structural elements.
2. Behavior of Self-centering Systems

Figure 7.2 Idealized Seismic Response of Self-Centering Structure (from Christopoulos 2002)

3. Dynamic Response of MDOF Self-centering Systems

- Response of 3, 6, 10-storey Steel Frames
- Self-centering Frames with Post-Tensioned Energy Dissipating (PTED) Connections vs. Welded Moment Resisting Frames (WMRF)
- Beam and Column Sections designed according to UBC 97 for a Seismic Zone 4 (Los Angeles)
- Special MRF, assuming non-degrading idealized behavior for welded MRFs
- A992 Steel, with RBS connections
- Hinging of beams and P-M interaction included
- 2% viscous damping assigned to 1st and (N-1)th modes
- 6 historical ground motions scaled to match code spectrum
- 20 second zero acceleration pad at end of records
3. Dynamic Response of MDOF Self-centering Systems

- Response of 3-Storey Frames to LP3 Record (0.5 g)
3. Dynamic Response of MDOF Self-centering Systems

- Response of 6-Storey Frames to LP3 Record (0.5 g)

- Response of 10-Storey Frames to LP3 Record (0.5 g)

- Response of 6-Storey Frames to Ensemble of 6 Records

- PTED Frames:
 - similar maximum drifts as WMRFs (for all records)
 - limited residual drift at base columns unlike welded frame
 - similar maximum accelerations as WMRFs (for all records)
3. Dynamic Response of MDOF Self-centering Systems

- Explicit Consideration of Residual Deformations in Performance-Based Seismic Design (see Section 2.3.3)

4. Ancient Applications of Self-centering Systems

![Ancient Greek Temples](image)

Figure 7.27: Ancient Greek Temples: a) General View and b) Segmented Column

5. Early Modern Applications of Self-centering Systems

- South Rangitikei River Railroad Bridge, New Zealand, built in 1981
- Piers: 70 m tall, six spans prestressed concrete hollow-box girder, overall span: 315 m
- Rocking of piers combined with energy dissipation devices (torsional dampers)
- Gravity provides self-centering force
6. Shape Memory Alloys

- **Superelasticity**
 - Shape Memory Alloys (SMAs): class of materials able to develop superelastic behavior
 - SMAs are made of two or three different metals
 - Nitinol: 49% of Nickel and 51% of Titanium.
 - Copper and zinc can also be alloyed to produce superelastic properties.
 - Depending on temperature of alloying, several molecular rearrangements of crystalline structure of alloy are possible
 - Low alloying temperatures: martensitic microstructure
 - High alloying temperatures austenitic microstructure

Figure 7.29 SMA Hysteresis Behavior: a) for Low Alloying Temperatures and b) for High Alloying Temperatures

Figure 7.30 SMA Superelastic Behavior for Intermediate Alloying Temperatures
6. Shape Memory Alloys

• Superelasticity
 – Advantages for supplemental damping purposes:
 • Exhibits high stiffness and strength for small strains
 • It becomes more flexible for larger strains.
 • Practically no residual strain and
 • Dissipates energy
 – Disadvantages:
 • Sensitive to fatigue: after large number of loading cycles, SMAs deteriorate into classical plastic behavior with residual strains
 • Cost

6. Shape Memory Alloys

• Experimental Studies
 – Aiken et al. (1992):
 • Studied experimentally the use of Nitinol as energy dissipating element
 • Shake table tests a small-scale 3-storey steel frame

Figure 7.3: Three-story Test Frame Used for Shake Table Studies of Nitinol SMAs (Lamb, 1992, UC Berkeley)

6. Shape Memory Alloys

• Experimental Studies
 – Aiken et al. (1992):
 • Nitinol wires incorporated at each end of the cross braces
 • Nitinol loaded in tension only
 • No preload in Nitinol wires for initial shake table tests

Figure 7.4: Hysteresis of Nitinol Wires - Recorded during Shake Tests (Pruzan et al., 1980, Seismic Research Center, University of New Mexico, Federal Seismic Safety Program)
6. Shape Memory Alloys

- Experimental Studies
 - Aiken et al. (1992):

![Diagrams](image1)

- Witting and Cozzarelli (1992):
 - Shake table tests on 2/5-scale steel frame incorporating Cu-Zn-Al SMA dampers installed as diagonal braces
 - SMA dampers configured as a torsion bar system

![Diagrams](image2)

- Ocel et al. (2004):
 - Investigated cyclic behavior of steel beam-column connections incorporating Nitinol rods
 - Four Nitinol rods in martensitic phase incorporated as axial elements in connection to dissipate energy

![Diagrams](image3)
6. Shape Memory Alloys

- Experimental Studies
 - Ocel et al. (2004):
 - Nitinol rods re-heated above alloying temperature
 - Re-generate austenitic microstructure and recover initial shape
 - Rods heated for 8 minutes at 300°C and ⅔ of permanent deformations recovered

- Structural Implementations
 - Seismic retrofit of historical San Giorgio bell tower, Italy
 - Damaged after 1996 Modena and Reggio earthquake
 - Nitinol wires introduced and prestressed through masonry walls of bell tower to prevent tensile stresses
6. Shape Memory Alloys

• Structural Implementations
 – Seismic rehabilitation of Upper Basilica di San Francesco in Assisi, Italy
 • Damaged by the 1997-98 Marche and Umbria earthquakes
 • Nitinol wires used in post-tensioning rods

7. The Energy Dissipating Restraint (EDR)

• Hysteretic Behavior
 – Manufactured by Fluor Daniel, Inc.
 – Originally developed for support of piping systems
 – Principal components:
 • internal spring, steel compression wedges, bronze friction wedges, stops at both ends of internal spring, external cylinder

7. The Energy Dissipating Restraint (EDR)

• Hysteretic Behavior
 [Diagram showing the components and behavior of the EDR]
7. The Energy Dissipating Restraint (EDR)

- Hysteretic Behavior

\[\text{Figure 7.4: Hysteretic loops for various configurations of EDR (from above, reproduced with the permission of the Earthquake Engineering Research Institute)}\]

7. The Energy Dissipating Restraint (EDR)

- Experimental Studies
 - Aiken et al. (1993):
 - Same three-storey steel frame as for SMA damper tests

\[\text{Figure 7.6: Test Frame with EDR (from Aiken et al., 1993, reproduced with the permission of the Earthquake Engineering Research Institute)}\]

7. The Energy Dissipating Restraint (EDR)

- Experimental Studies
 - Aiken et al. (1993):
8. Self-centering Dampers Using Ring Springs

- Description of Ring Springs (Friction Springs)
 - Outer and inner stainless steel rings with tapered mating surfaces
 - When spring column loaded in compression, axial displacement and sliding of rings on conical friction surfaces
 - Outer rings subjected to circumferential tension (hoop stress)
 - Inner rings experience compression
 - Special lubricant applied to tapered surfaces
 - Small amount of pre-compression applied to align rings axially as column stack
 - Flag-shaped hysteresis in compression only

[Diagram of Ring Spring Details]

- Flag-shaped hysteresis in compression only

Compression Force, \(F \)
Axial Displacement

8. Self-centering Dampers Using Ring Springs

- SHAPIA Damper
 - Manufactured by Spectrum Engineering, Canada
 - Ring spring stack restrained at ends by cup flanges
 - Tension and compression in damper induces compression in ring spring stack: symmetric flag-shaped hysteresis

[Diagram of SHAPIA Damper Prototype]

8. Self-centering Dampers Using Ring Springs

- Experimental Studies with SHAPIA Damper
 - Characterization Tests

[Table 7.6: Material Values of Damage Indicators for SHAPIA Damper]

<table>
<thead>
<tr>
<th>Material Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_D)</td>
<td>Tensile</td>
</tr>
<tr>
<td>(R_C)</td>
<td>Compressive</td>
</tr>
<tr>
<td>(R_S)</td>
<td>Shear</td>
</tr>
<tr>
<td>(R_F)</td>
<td>Friction</td>
</tr>
<tr>
<td>(R_T)</td>
<td>Torsional</td>
</tr>
<tr>
<td>(R_M)</td>
<td>Magnetization</td>
</tr>
</tbody>
</table>
8. Self-centering Dampers Using Ring Springs

- Experimental Studies with SHAPIA Damper
 - Characterization Tests

![Diagram of SHAPIA Damper](image1)

![Diagram of Experimental Setup](image2)

8. Self-centering Dampers Using Ring Springs

- Experimental Studies with SHAPIA Damper
 - Shake Table Tests
 - Single-storey moment-resisting plane frame: height of 1.8 m and bay width of 2.9 m
 - Column base was linked to pin base. Weight simulated by four concrete blocks (30 kN each) linked horizontally to upper beam.
 - Concrete blocks were supported vertically by peripheral pinned gravity frame.
 - Test frame carry only the lateral inertia forces.
 - Lateral load resistance provided by MRF and bracing member.

![Graph of Frequency Dependency](image3)

![Graph of Time History Response](image4)
9. Post-tensioned Frame and Wall Systems

- Concrete Frames
 - PRESSS (PREcast Seismic Structural Systems) program
 - Use of unbonded post-tensioning elements to develop self-centering hybrid precast concrete building systems

![Image of Hybrid Frame System](after Preumont and Nakato, 2002)

Figure 9.10 Hybrid Frame System (after Preumont and Nakato, 2002)

CIE500D “Introduction to Graduate Research in Structural Engineering”
9. Post-tensioned Frame and Wall Systems

- Hysteretic Characteristics of Post-Tensioned Energy Dissipating (PTED) Connections
 - Self-centering conditions: $M_c = (k_1 - k_2)P_B$
 - k_1 = Elastic axial stiffness of ED elements
 - k_2 = Post-yield axial stiffness of ED elements
 - θ_b = Gap opening angle at first yield of ED elements
 (textbook p. 256-262)

- Sectional Analysis of PTED Connections
 - Construct complete moment-rotation relationship of connection by increasing θ and computing the corresponding moment
 - Separate PT and ED contributions

- Graph showing moment-rotation relationship for PTED connections.
9. Post-tensioned Frame and Wall Systems

- Cyclic Modelling of PTED Connections with Equivalent Nonlinear Rotational Springs

- Extension of PTED Model to Constrained Beams
 - Model Accounting for Beam Depth
9. Post-tensioned Frame and Wall Systems

- Extension of PTED Model to Constrained Beams
 - Model Accounting for Beam Depth

9. Post-tensioned Frame and Wall Systems

- Concrete Walls
 - Post-Tensioned Rocking Wall System (Stanton et al. 1993)

9. Post-tensioned Frame and Wall Systems

- Concrete Walls
 - Jointed Cantilever Wall System (Restrepo 2002)
9. Post-tensioned Frame and Wall Systems

- Concrete Walls
 - Jointed Cantilever Wall System (Restrepo 2002)

Extent of damage at 6% drift

9. Post-tensioned Frame and Wall Systems

- Self-centering Systems for Confined Masonry Walls

9. Post-tensioned Frame and Wall Systems

- Self-centering Systems for Confined Masonry Walls
9. Post-tensioned Frame and Wall Systems
• Self-Centering Systems for Steel Structures
 – Hybrid Post-Tensioned Connection (Ricles et al. 2001)

![Image of Hybrid Post-Tensioned Connection](image1)

9. Post-tensioned Frame and Wall Systems
• Self-Centering Systems for Steel Structures
 – PTED Connection (Christopoulos et al. 2002a, 2002b)

![Image of PTED Connection](image2)

9. Post-tensioned Frame and Wall Systems
• Self-Centering Systems for Steel Structures
 – PTED Connection (Christopoulos et al. 2002a, 2002b)

![Image of PTED Connection](image3)
11. Post-tensioned Frame and Wall Systems

- Shake table testing of PTED frame (Wang and Filiatrault 2008)

11. Post-tensioned Frame and Wall Systems

- Self-Centering Systems for Steel Structures
 - Friction Damped PT Frame (Kim and Christopoulos 2008)
 - ED bars replaced by Friction Energy Dissipating (FED) connections made of Non Asbestos Organic (NAO) brake lining pads on stainless steel

- Self-Centering Energy Dissipating Bracing System (Christopoulos et al. 2008)
 - Two bracing members, tensioning system, energy dissipating system, guiding elements
11. Post-tensioned Frame and Wall Systems
 • Application to wood structures
 – Beam-to-column subassemblies using Laminated Veneer Lumber (LVL)
 – Unbonded post-tensioned tendons and either external or internal energy dissipaters

9. Post-tensioned Frame and Wall Systems
 • Self-Centering Systems for Bridges

10. Considerations for the Seismic Design of Self-centering Systems
 • If adequate amount of energy dissipation capacity provided to self-centering systems ($\beta = 0.75$ to 0.90), maximum displacement similar to traditional systems of similar initial stiffness
 • General design approach for self-centering systems:
 – Derive lateral design forces for an equivalent traditional system
 – Transform traditional system into self-centering system with equal strength at the target design drift
 – Design self-centering system for similar initial stiffness to traditional system with $\beta = 0.75$ to 0.90
Questions/Discussions