
CE 561 Lecture Notes Fall 1998

Days 23: A digression on the numerical solution of boundary value problems

Earlier in the course, we spent substantial time learning how to solve initial value problems. As
we have seen, both perfectly mixed batch reactors and completely unmixed plug flow reactors
can be described mathematically in terms of an initial value problem. The other prototypical
reactor type is the perfectly mixed stirred-tank reactor. It can be modeled by a set of algebraic,
rather than differential, equations. We briefly discussed the numerical solution of a set of
nonlinear algebraic equations by Newton’s method in the context of implicit methods for initial
value problems. We will discuss this further below in the context of steady-state boundary value
problems.

A reactor with partial mixing generally cannot be described by a set of algebraic equations or by
a set of differential equations that take the form of an initial value problem. Instead, a partially
mixed reactor will usually lead to some sort of boundary value problem. The equations and
boundary conditions that you will derive in the first problem of homework 9 for cases where the
reactor is neither perfectly mixed nor completely unmixed are boundary value problems. These
are sets of differential equations that include derivatives or at least second order and that have
boundary conditions specified at more than one location. A boundary value problem that also
includes time dependence is an initial boundary-value problem. An example from the previous
lecture is the set of general reactor balance equations for constant physical properties

∇⋅v = 0

∑
=

+∇+∇⋅−=
M

i
iikkkk

k rCDCv
dt

dC

1

2 α

()()∑∑
==

∇⋅∇+∇−+∇+∆−=




 ∇⋅+

N

i
kkpkkkrefpk

M

i
iip CTDCCDTTCTrHTv

dt

dT
C

1

22

1

)(ˆ λρ

With boundary conditions specified over the reactor walls, inlet, and outlet, and an initial
condition specified over the whole reactor volume.

This is an initial-boundary-value problem. It is a set of partial differential equations in up to three
spatial dimensions plus the time dimension. We will not learn how to solve such equations in
this course. Such equations are probably best solved by starting from a commercial
computational fluid dynamics code.

A slightly simpler problem is given by the same set of reactor balance equations at steady state
∇⋅v = 0

0
1

2 =+∇+∇⋅− ∑
=

M

i
iikkkk rCDCv α

() ()()∑∑
==

∇⋅∇+∇−+∇+∆−=∇⋅
N

i
kkpkkkrefpk

M

i
iip CTDCCDTTCTrHTvC

1

22

1

)(ˆ λρ

With boundary conditions specified over the reactor walls, inlet, and outlet.

This is still a multi-dimensional problem, and we will not learn how to solve these either –
although it can be done by straightforward extensions of what we will learn. If you are interested

CE 561 Lecture Notes Fall 1998

in learning how to solve such equations, I would recommend the short and simple book by Prof.
Suhas Patankar entitled ‘Numerical Heat Transfer and Fluid Flow’.

What we will learn how to solve numerically is a one-dimensional boundary value problem. The
prototypical example of this is the steady-state plug flow tubular reactor with axial mixing. The
governing equations for that situation (assuming constant physical properties) are

0
1

2

2

=++− ∑
=

M

i
iik

k
k

k
x r

dx

Cd
D

dx

dC
v α , k = 1,N (N = number of chemical species)

()∑∑
==







+−++∆−+−

N

i

k
kpk

k
krefpk

M

i
iixp dx

dC

dx

dT
DC

dx

Cd
DTTC

dx

Td
rH

dx

dT
vC

1
2

2

2

2

1

)(ˆ λρ

with boundary conditions
Ck(x = 0) = Cko, and T(x = 0) = To

and 0==
== LxLx

k

dx

dT

dx

dC

To obtain an approximate numerical solution to this one-dimensional boundary value problem,
we will replace the continuous dependent variables (Ck, and T) with their values at a set of P
discrete points that span the length of the reactor (x = 0 to x = L). Then we will express the
derivatives in the equations and boundary conditions with finite difference approximations
involving the values at the P discrete points. This procedure is called discretizing the equations.
It converts the set of differential equations into a larger set of algebraic equations. We know
how to solve the algebraic equations using Newton’s method. As described above, we are
applying a ‘finite difference’ method to do the discretization. We could equally well apply a
‘finite element’ or ‘finite volume’ method. For a one-dimensional problem they would all come
out about the same. For a two or three dimensional problem, the different discretization methods
would lead to different sets of algebraic equations.

To illustrate this method, we will consider the simple set of reactions
(1) A1 + A2 ↔ A3 with r1 = k1C1C2 – k-1C3

(2) A1 + A3 ↔ A4 with r2 = k2C1C3 – k-2C4

Taking place in an isothermal plug-flow reactor with axial mixing. The reactor feed will be
equal amounts of A1 and A2. (C1(x = 0) = C2(x = 0) = Co, C3(x = 0) = C4(x = 0) = 0). Since we
are neglecting density changes in the reactor, the axial velocity is constant and we will just call it
v. For an isothermal reactor, we do not need to solve the enthalpy balance. Therefore the
equations describing this situation are

0

0

0

42312312112
3

2

3
3

312112
2

2

2
2

42312312112
1

2

1
1

=+−−++−

=+−+−

=+−+−+−

−−

−

−−

CkCCkCkCCk
dx

Cd
D

dx

dC
v

CkCCk
dx

Cd
D

dx

dC
v

CkCCkCkCCk
dx

Cd
D

dx

dC
v

CE 561 Lecture Notes Fall 1998

0423122
4

2

4
4 =−++− − CkCCk

dx

Cd
D

dx

dC
v

with boundary conditions
C1(x = 0) = C2(x = 0) = Co, C3(x = 0) = C4(x = 0) = 0

04321 ====
==== LxLxLxLx dx

dC

dx

dC

dx

dC

dx

dC

These may or may not be the best (most physically reasonable) boundary conditions. It depends
on the exact geometry of the reactor. But, for purposes of illustration, these are what we will
use.

To discretize the equations, we specify P points in the reactor at which we will (approximately)
solve for the concentrations. The more points we use, the more accurate our solution will be, but
the fewer points we use, the faster we will be able to calculate it. Consider the lth point, which
has position in the reactor xl and at which the concentrations are C1 = C1,l, C2 = C2,l, C3 = C3,l, C4

= C4,l. The derivatives appearing in the equations can then be expressed in terms of finite
difference approximations involving the concentrations and position at points l – 1, l, and l + 1.
There are two simple approximations that we will consider for approximating the first derivative
of the concentrations at point l.
These are a central difference approximation, given by

11

1,1,

−+

−+

== −
−

=
∆
∆≅

ll

lili

xxxx

i

xx

CC

x

C

dx

dC

ll

and an upwind difference approximation, given by

1

1,,

−

−

== −
−

=
∆
∆≅

ll

lili

xxxx

i

xx

CC

x

C

dx

dC

ll

when v > 0

and
ll

lili

xxxx

i

xx

CC

x

C

dx

dC

ll
−
−

=
∆
∆≅

+

+

== 1

,1, when v < 0

The central difference approximation (which involves the values at neighboring points, but not at
point l itself) is the more accurate approximation to the derivative when the convective term in
the equation is comparable to or smaller than the diffusive term. For situations where the
convective term is larger than the diffusive term, the transport is primarily from the upstream to
the downstream portion of the reactor. In those cases, the upwind difference approximation,
which is biased to include information from the upstream direction of the flow, performs better.
Use of the central difference approximation in such situations can cause severe numerical
difficulties in obtaining the solution.

The simplest approximation to the 2nd derivative of one of the concentrations at point l is given
by applying the central difference approximation to get first derivatives at points halfway
between point l and its neighboring points (at xl+1/2 = (xl + xl+1)/2 and xl-1/2 = (xl + xl-1)/2), and
then applying the central difference approximation again to those derivatives to get the 2nd

derivative

CE 561 Lecture Notes Fall 1998

1

1,,

1

,1,

2/1

2/1

−

−

=

+

+

=

−
−

≅

−
−

≅

−

+

ll

lili

xx

i

ll

lili

xx

i

xx

CC

dx

dC

xx

CC

dx

dC

l

l

and

() () ()()
()()()llllll

lilllilllill

xx

i

llll

ll

lili

ll

lili

ll

xx

i

xx

i

xx

i

xxxxxx

CxxCxxCxx

dx

Cd

xxxx
xx

CC

xx

CC

xx

dx

dC

dx

dC

dx

Cd

l

ll

l

−−−
−+−−−

≅

−−+
−
−

−
−
−

≅
−

−
≅

+−+−

−+−++−

=

−+

−

−

+

+

−+

==

=

−+

1111

1,1,111,1

2

2

11

1

1,,

1

,1,

2/12/1
2

2

2
22

2/12/1

If the points are equally spaced so that xl+1 – xl = xl – xl-1 = h, then this simplifies to

2

1,,1,

2

2 2

h

CCC

dx

Cd lilili

xx

i

l

−+

=

+−
≅

It is often advantageous to use unequally spaced points – putting more points in locations where
there are steep concentration gradients and fewer points in locations where the concentration is
not changing much. This is best done via grid refinement – solving the problem repeatedly with
larger and larger sets of points. After each solution, more points are added in the regions where
they are most needed. The process is repeated until some criterion for the maximum change in
concentration between adjacent points is satisfied. An example of a program where this is done
is the PREMIX program that is part of the CHEMKIN suite of programs that were originally
developed at Sandia National Laboratories and are now sold by Reaction Design, Inc.
(http://www.reactiondesign.com/premixsum.html). All that being said, we will complete this
example using a uniformly spaced grid with grid spacing h, and will use central differences for
the first derivatives, so that we can approximate the derivatives by

2

1,,1,

2

2
1,1, 2

 and ,
2 h

CCC

dx

Cd

h

CC

dx

dC lilili

xx

ilili

xx

i

ll

−+

=

−+

=

+−
≅

−
≅

With this discretization scheme, the equations for the concentrations at point l become

0
2

2

0
2

2

0
2

2

0
2

2

,42,3,122

1,4,41,4
4

1,41,4

,42,3,12,31,2,112

1,3,31,3
3

1,31,3

,31,2,112

1,2,21,2
2

1,21,2

,42,3,12,31,2,112

1,1,11,1
1

1,11,1

=−+
+−

+
−

−

=+−−+
+−

+
−

−

=+−
+−

+
−

−

=+−+−
+−

+
−

−

−
−+−+

−−
−+−+

−
−+−+

−−
−+−+

lll
lllll

llllll
lllll

lll
lllll

llllll
lllll

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

And we have a total of P – 2 of these sets of equations, for l = 2 to P – 1. At the end points, we
apply the boundary conditions. At the first point (l = 1, xl = 0) the boundary conditions are

C1,1 = C2,1 = Co, C3,1 = C4,1 = 0

CE 561 Lecture Notes Fall 1998

At the other boundary, we can approximate the first derivatives (which are set equal to zero in
the boundary condition) by a finite difference using points P – 1, and P. That gives

01,4,41,3,31,2,21,1,1 =
−

=
−

=
−

=
− −−−−

h

CC

h

CC

h

CC

h

CC PPPPPPPP

or more simply

1,4,41,3,31,2,21,1,1 , , , −−−− ==== PPPPPPPP CCCCCCCC

Including these equations at the boundaries, we now have a total of 4P algebraic equations in 4P
unknowns (4 concentrations at each of P points). The equations are non-linear due to non-linear
due to the second-order terms in the reaction rate terms. As we discussed earlier in the quarter,
we can solve a set of non-linear algebraic equations using Newton’s method. In preparation for
doing so, we will arrange the unknowns in a vector (which we will call y) as follows

[]TPPPP CCCCCCCCCCy 4,3,2,1,2,22,11,41,31,21,1=
where the superscript T indicates the transpose of the vector (so it is a column vector, which
would take a lot of space to write). The corresponding vector of algebraic equations can be
written as f(y) = 0, where f(y) is as shown on the following page.

CE 561 Lecture Notes Fall 1998





































































































−

−

−

−

−+
+−

+
−

−

+−−+
+−

+
−

−

+−
+−

+
−

−

+−+−
+−

+
−

−

−+
+−

+
−

−

+−−+
+−

+
−

−

+−
+−

+
−

−

+−+−
+−

+
−

−

−

−

=

−

−

−

−

−−−−
−−

−−−−−−−−
−−−

−−−−
−−−

−−−−−−−−
−−−

−

−−

−

−−

1,4,4

1,3,3

1,2,2

1,1,1

1,421,31,122

1,41,4,4
4

2,4,4

1,421,31,121,311,21,112

2,31,3,3
3

2,3,3

1,311,21,112

2,21,2,2
2

2,2,2

1,421,31,121,311,21,112

2,11,1,1
1

2,1,1

2,422,32,122

1,42,43,4
4

1,43,4

2,422,32,122,312,22,112

1,32,33,3
3

1,33,3

2,312,22,112

1,22,23,2
2

1,23,2

2,422,32,122,312,22,112

1,12,13,1
1

1,13,1

1,4

1,3

1,2

1,1

2

2

2

2

2

2

2

2

....

....

2

2

2

2

2

2

2

2

PP

PP

PP

PP

PPP
PPPP

PPPPPP
PPPPP

PPP
PPPPP

PPPPPP
PPPPP

o

o

CC

CC

CC

CC

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

CkCCk
h

CCC
D

h

CC
v

CkCCkCkCCk
h

CCC
D

h

CC
v

C

C

CC

CC

f

For purposes of solving the equations, it is useful to re-write this in terms of the components of y,
which are what we are solving for. Doing so gives

CE 561 Lecture Notes Fall 1998

()

































































































−

−

−

−

−++−+−−

+−−++−+−−

+−+−+−−

+−+−+−+−−

−++−+−−

+−−++−+−−

+−+−+−−

+−+−+−+−−

−

−

=

−

−−

−−

−−

−−−−
−−−

−−−−−−−−
−−−−−

−−−−
−−−−−

−−−−−−−−
−−−−−

−

−−

−

−−

444

5414

6424

7434

442547422
84444

4
844

44254742541647412
945414

3
9414

541647412
1046424

2
10424

44254742541647412
1147434

1
11434

827522
4812

4
412

82752716512
3711

3
311

716512
2610

2
210

82752716512
159

1
19

4

3

2

1

2

2

2

2

2

2

2

2

....

....

2

2

2

2

2

2

2

2

PP

PP

PP

PP

PPP
PPPPP

PPPPPP
PPPPP

PPP
PPPPP

PPPPPP
PPPPP

o

o

yy

yy

yy

yy

ykyyk
h

yyy
D

h

yy
v

ykyykykyyk
h

yyy
D

h

yy
v

ykyyk
h

yyy
D

h

yy
v

ykyykykyyk
h

yyy
D

h

yy
v

ykyyk
h

yyy
D

h

yy
v

ykyykykyyk
h

yyy
D

h

yy
v

ykyyk
h

yyy
D

h

yy
v

ykyykykyyk
h

yyy
D

h

yy
v

y

y

Cy

Cy

yf

Now the problem is formulated so that it can be solved efficiently using Newton’s method.
(Also known as the Newton-Raphson method, for all of you Raphson fans out there). As I am
sure you remember, the algorithm is basically as follows

Set y = some initial guess
Do for j from 1 to some maximum allowable number of iterations
 Solve the linear matrix equation() ()yfyJ −=∆ for ∆y

Set y = y + ∆y
If some measure of convergence (like the norm of ∆y) is small enough, stop

End do loop

CE 561 Lecture Notes Fall 1998

In this algorithm, the matrix J is the Jacobian of the system of equations. The elements of J

are defined by
j

i
ji y

f
J

∂
∂=, . For this example problem, the Jacobian matrix has the structure







































=

−

−−−−−

−−−−−−

−−−−−−

PPPP

PPPPPP

PPPPPP

PPPPPP

MM

MMM

MMM

MMM

MMM

MMM

MMM

M

J

4,414,4

4,1414,1424,14

14,2424,2434,24

24,3434,3444,34

5,44,43,4

4,33,32,3

3,12,21,2

1,1

000...0000

00...0000

00...0000

00...0000

..............................

00........................

0000...00

0000...00

0000...00

0000...0000

where each of the sub-matrices
ji

M
,

 is a 4x4 matrix of the appropriate derivatives. Some of

these sub-matrices are



















=

1000

0100

0010

0001

1,1
M



























+−

+−

+−

+

=

2
4

2
3

2
2

2
1

1,2

2
000

0
2

00

00
2

0

000
2

h

D

h

v
h

D

h

v
h

D

h

v
h

D

h

v

M



























−−

−−−−

−−−

+−−−−−

=

−

−−

−

−−

22
4

5272

21522
3

517261

1512
2

61

21525172612
1

2,2

2
0

2

0
2

2

k
h

D
ykyk

kkyk
h

D
ykykyk

kyk
h

D
yk

kkykykykyk
h

D

M



























+−

+−

+−

+−

=

2
4

2
3

2
2

2
1

3,2

2
000

0
2

00

00
2

0

000
2

h

D

h

v
h

D

h

v
h

D

h

v
h

D

h

v

M

CE 561 Lecture Notes Fall 1998

We see a pattern for the three sub-matrices in a given row, so we can say that for l=2 to l=P-1 the
submatrices are



























+

+

+

+

=
−

2
4

2
3

2
2

2
1

1,

2
000

0
2

00

00
2

0

000
2

h

D

h

v
h

D

h

v
h

D

h

v
h

D

h

v

M
ll



























−−

−−−−

−−−

+−−−−−

=

−−−

−−−−−−

−−−

−−−−−−

22
4

342142

213422
3

341142241

13412
2

241

213423411422412
1

,

2
0

2

0
2

2

k
h

D
ykyk

kkyk
h

D
ykykyk

kyk
h

D
yk

kkykykykyk
h

D

M

ll

llll

ll

llll

ll



























+−

+−

+−

+−

=

2
4

2
3

2
2

2
1

3,2

2
000

0
2

00

00
2

0

000
2

h

D

h

v
h

D

h

v
h

D

h

v
h

D

h

v

M

Finally, the last submatrices (for l=P) are



















−
−

−
−

=
−

1000

0100

0010

0001

1,PP
M



















=

1000

0100

0010

0001

,PP
M

Now we have all of the information that we need to implement Newton’s method to solve the
equations. We notice that the Jacobian matrix is mostly zeros and has a banded structure. The
bandwidth of the Jacobian is 9. That means that all matrix elements except for the 9 elements on
each row that are closest to the diagonal are zero. The only non-zero elements are those on the
diagonal and four on each side of the diagonal. This means that in a computer program, we can
store just 9 elements of each row instead of the whole thing. If we had 100 grid points, we
would have 400 equations, so J would be a 400 by 400 matrix. Storing all of the elements of J

would require (400)2 = 160,000 words of memory. Storing just 9 elements from each row
requires only 9*400 = 3600 words of memory (a factor of 44 less memory). There number of
operations required to solve the matrix equation () ()yfyJ −=∆ is reduced by the square of this

factor. The number of operations required to solve a matrix equation with a full matrix (all non-

CE 561 Lecture Notes Fall 1998

zero elements) is proportional to n3, where n is the number of rows (or columns) in the matrix.
For a banded matrix, the number of operations is proportional to n*(bw)2, where bw is the band-
width. Many matrix equation solvers are structured so that they can take advantage of the
banded structure of the matrix. Therefore, it is important that we arrange the matrix elements as
we have done so that the bandwidth is minimized and it is important that we provide information
about the bandwidth to the solver.

To illustrate the implementation of the method, I have attached below a Matlab program written
to solve the particular problem that we have been using as an example here. It looks long, but
that is mostly because I have tried to put in a lot of comments. With 100 grid points, it runs in
less than 1 minute. The sparse matrix capabilities of matlab are used to store only the non-zero
matrix elements.

function sol=day23(Co,k1,km1,k2,km2,v,D1,D2,D3,D4,L,np)
% function day23(Co,k1,km1,k2,km2,v,D1,D2,D3,D4,L,np)
% Co = initial concentration of species 1 and 2 (mol/cm3)
% k1, km1, k2, km2 = rate constants (mol, cm, s units)
% v = velocity (cm/s)
% D1, D2, D3, D4 = diffusion coefficients (cm2/s)
% L = reactor length (cm)
% np = total number of grid points
%
% the program solves the example set of equations from the
% 'day 23' lecture on finite difference methods
%
% Set a couple parameters
itmax=10; % maximum number of iterations
errcrit=1.e-6; % error criterion
%
% put dummy values in y, f, and deltay so that they are
% interpreted as column vectors throughout the program.
%
deltay=ones(4*np,1);
f=ones(4*np,1);
y=ones(4*np,1);
%
% Fill in an initial guess for the dependent variables
% y is the vector of dependent variables (concentrations),
% with interlaced variables as in the course notes, so that y1
% is C1 at node 1, y2 is C2 at node 1, etc.
% For the initial guess, we'll use the inlet composition
%
for i=1:np
 y(4*i-3)=Co;
 y(4*i-2)=Co;
 y(4*i-1)=0;
 y(4*i)=0;
end
%
% compute the grid spacing
h=L/(np-1);
%
% compute the Jacobian elements that don't change from iteration
% to iteration

CE 561 Lecture Notes Fall 1998

e1=v/2/h+D1/h/h;
e2=v/2/h+D2/h/h;
e3=v/2/h+D3/h/h;
e4=v/2/h+D4/h/h;
e5=-2*D1/h/h;
e6=-2*D2/h/h;
e7=-2*D3/h/h;
e8=-2*D4/h/h;
e9=-v/2/h+D1/h/h;
e10=-v/2/h+D2/h/h;
e11=-v/2/h+D3/h/h;
e12=-v/2/h+D4/h/h;
%
% Now we will begin the loop over the iterations of Newton's method.
%
% fix maximum number of iterations at 100
for i=1:itmax
% evaluate the function of which we're finding a root
 f(1)=y(1)-Co;
 f(2)=y(2)-Co;
 f(3)=y(3);
 f(4)=y(4);
 for l=2:np-1;
 f(4*l-3)=-v/2/h*(y(4*(l+1)-3)-y(4*(l-1)-3));
 f(4*l-3)=f(4*l-3)+D1/h/h*(y(4*(l+1)-3)-2*y(4*l-3)+y(4*(l-1)-3));
 f(4*l-3)=f(4*l-3)-k1*y(4*l-3)*y(4*l-2)+km1*y(4*l-1);
 f(4*l-3)=f(4*l-3)-k2*y(4*l-3)*y(4*l-1)+km2*y(4*l);
 f(4*l-2)=-v/2/h*(y(4*(l+1)-2)-y(4*(l-1)-2));
 f(4*l-2)=f(4*l-2)+D2/h/h*(y(4*(l+1)-2)-2*y(4*l-2)+y(4*(l-1)-2));
 f(4*l-2)=f(4*l-2)-k1*y(4*l-3)*y(4*l-2)+km1*y(4*l-1);
 f(4*l-1)=-v/2/h*(y(4*(l+1)-1)-y(4*(l-1)-1));
 f(4*l-1)=f(4*l-1)+D3/h/h*(y(4*(l+1)-1)-2*y(4*l-1)+y(4*(l-1)-1));
 f(4*l-1)=f(4*l-1)+k1*y(4*l-3)*y(4*l-2)-km1*y(4*l-1);
 f(4*l-1)=f(4*l-1)-k2*y(4*l-3)*y(4*l-1)+km2*y(4*l);
 f(4*l)=-v/2/h*(y(4*(l+1))-y(4*(l-1)));
 f(4*l)=f(4*l)+D4/h/h*(y(4*(l+1))-2*y(4*l)+y(4*(l-1)));
 f(4*l)=f(4*l)+k2*y(4*l-3)*y(4*l-1)-km2*y(4*l);
 end
 f(4*np-3)=y(4*np-3)-y(4*np-7);
 f(4*np-2)=y(4*np-2)-y(4*np-6);
 f(4*np-1)=y(4*np-1)-y(4*np-5);
 f(4*np) =y(4*np) -y(4*np-4);
%
% Now we check for convergence of Newton's method.
% The convergence criterion assures that both the function and the change
% in the solution from iteration to iteration are small. They are weighted
% to have the same units (and therefore be of the same order of magnitude).
% Since f has units of reaction rate, dividing f by the largest
% first-order rate constant gives it units of concentrations (the same units
% as delta y). To make the convergence measure dimensionless, we divide by
the
% norm of y (the concentration vector).
%
 disp(['Norm(f) = ',num2str(norm(f))])
 disp(['Norm(deltay) = ',num2str(norm(deltay))])
 errmeas=(norm(f)/max([k1 k2]')+norm(deltay))/norm(y);
 disp(['Error Measure = ',num2str(errmeas)])

CE 561 Lecture Notes Fall 1998

 if (errmeas<errcrit)
 disp(['Converged!'])
 x=0:h:L;
 for j=1:np;
 sol(j,1)=y(j*4-3);
 sol(j,2)=y(j*4-2);
 sol(j,3)=y(j*4-1);
 sol(j,4)=y(j*4);
 end
 plot(x,sol)
 return
 end
%
% Now we must build the Jacobian matrix. The elements that don't change can
% just be filled in using the values calculated above (e1,e2,etc.). The
others
% will be calculated.
%
% I'll put the elements into a form that will eventually let me make them
% into a sparse matrix. Jsparse is a three column matrix in which the
% three columns are a row index, a column index, and a value to
% be stored in the matrix.
%
% I'll re-build the whole thing each time through this loop, so I don't have
% to keep track of the rows. I start with an empty matrix, and just keep
adding
% to the bottom of it.
%
% first the M(1,1) submatrix
 Jsparse=[];
 Jsparse(1,:)=[1 1 1];
 Jsparse=[Jsparse;2 2 1];
 Jsparse=[Jsparse;3,3,1];
 Jsparse=[Jsparse;4,4,1];
%
% Now, we loop over the internal grid points
 for l=2:np-1
%
% First the submatrix M(l,l-1), which is diagonal, and for which we
% have already calculated the elements
 Jsparse=[Jsparse;4*l-3 4*l-7 e1];
 Jsparse=[Jsparse;4*l-2 4*l-6 e2];
 Jsparse=[Jsparse;4*l-1 4*l-5 e3];
 Jsparse=[Jsparse;4*l 4*l-4 e4];
%
% Now the submatrix M(l,l), which is nominally full, and whose elements
% depend on the reaction rates and therefore on the concentrations. Refer
% to the course notes for the formulae
 Jsparse=[Jsparse;4*l-3 4*l-3 e5-k1*y(4*l-2)-k2*y(4*l-1)];
 Jsparse=[Jsparse;4*l-3 4*l-2 -k1*y(4*l-3)];
 Jsparse=[Jsparse;4*l-3 4*l-1 -k2*y(4*l-3)+km1];
 Jsparse=[Jsparse;4*l-3 4*l km2];
 Jsparse=[Jsparse;4*l-2 4*l-3 -k1*y(4*l-2)];
 Jsparse=[Jsparse;4*l-2 4*l-2 e6-k1*y(4*l-3)];
 Jsparse=[Jsparse;4*l-2 4*l-1 km1];
 Jsparse=[Jsparse;4*l-1 4*l-3 k1*y(4*l-2)-k2*y(4*l-1)];
 Jsparse=[Jsparse;4*l-1 4*l-2 k1*y(4*l-3)];

CE 561 Lecture Notes Fall 1998

 Jsparse=[Jsparse;4*l-1 4*l-1 e7-k2*y(4*l-3)-km1];
 Jsparse=[Jsparse;4*l-1 4*l km2];
 Jsparse=[Jsparse;4*l 4*l-3 k2*y(4*l-1)];
 Jsparse=[Jsparse;4*l 4*l-1 k2*y(4*l-3)];
 Jsparse=[Jsparse;4*l 4*l e8-km2];
%
% Now the submatrix M(l,l+1), which is diagonal, and for which we
% have already calculated the elements
 Jsparse=[Jsparse;4*l-3 4*l+1 e9];
 Jsparse=[Jsparse;4*l-2 4*l+2 e10];
 Jsparse=[Jsparse;4*l-1 4*l+3 e11];
 Jsparse=[Jsparse;4*l 4*l+4 e12];
 end
%
% Finally, we fill in the last two submatrices, M(np,np-1) and M(np,np)
%
 Jsparse=[Jsparse;4*np-3 4*np-7 -1];
 Jsparse=[Jsparse;4*np-2 4*np-6 -1];
 Jsparse=[Jsparse;4*np-1 4*np-5 -1];
 Jsparse=[Jsparse;4*np 4*np-4 -1];
 Jsparse=[Jsparse;4*np-3 4*np-3 1];
 Jsparse=[Jsparse;4*np-2 4*np-2 1];
 Jsparse=[Jsparse;4*np-1 4*np-1 1];
 Jsparse=[Jsparse;4*np 4*np 1];
%
% Now, we make the jacobian into a matlab sparse matrix
 Jac=sparse(Jsparse(:,1),Jsparse(:,2),Jsparse(:,3),4*np,4*np);
%
% Now we solve J*(delta y) = -f
 deltay=-Jac\f;
% and add this change to y
 y=y+deltay;
% Now we return to the top of the loop.
end
%
% If we get to this point, the max. number of iterations was completed
% without converging.
disp(['Maximum number of iterations exceeded'])
disp(['Convergence criterion was not satisfied'])
sol=[];
return

Running this program with the input parameters (just arbitrarily made up)

Co = 5×10-7 mol cm-3; k1 = 5×106 mol cm-3 s-1; k-1 = 0.5 s-1; k2 = 1×107 mol cm-3 s-1; k-2 = = 0.5 s-
1; D1 = D2 = D3 = D4 = 0.5 cm2 s-1; L = 10 cm; and v = 1 cm/s

Gave convergence after 5 Newton iterations for 100 grid points, and resulted in the computed
concentration profiles shown below.

You may want to copy this program and use it as a starting point for the 2nd homework problem,
which is obviously closely related.

CE 561 Lecture Notes Fall 1998

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5
x 10

−7

Distance Along Reactor (cm)

S
pe

ci
es

 C
on

ce
nt

ra
tio

ns
 (

m
ol

 c
m

−
3)

C
2

C
1

C
3

C
4

