BUBBLE-CAP TRAY HYDRAULICS

Theory

A schematic of a bubble-cap tray is given in Figure 1 of the schematics.

The pressure drop for vapor flow from one tray to the next is designated h_t and has the value that would be read from a manometer tapped to the vapor space of adjacent trays (see Figure 1) h_t is segregated into the following resistances:

$$h_t = h_{cd} + h_{so} + h_l \tag{1}$$

where

 h_{cd} = drop through dry caps, in. liquid

 h_{so} = drop through wet slots, in. liquid

 h_l = drop through aerated mass over and around bubble cap, in. liquid

Equations used for calculating the various terms in Eq. (1) are:

$$h_{so} = 1.20 \left(\frac{\boldsymbol{r}_g}{\boldsymbol{r}_l - \boldsymbol{r}_g} \right)^{1/5} h_{sh}^{4/5} U_s^{2/5}$$
(2)

where

 r_g = gas density, lb/ft³

 $\boldsymbol{r}_l =$ liquid density, lb/ft³

 h_{sh} = slot height, in.

 U_s = linear gas velocity through slots, ft/s

= volumetric vapor flow rate/slot area per tray

$$h_{cd} = k_2 \frac{\boldsymbol{r}_g}{\boldsymbol{r}_l} U_h^2 \tag{3}$$

where

 k_2 is called a dry-cap head-loss coefficient. It is a function of the annular/riser area and can be found in references like those listed below. (If you have trouble locating

this or any other correlation, see the teaching assistant.)

 U_h = linear gas velocity through risers, ft/s

= volumetric vapor flow rate/total riser area per tray

$$h_l = \boldsymbol{b} \left(h_s + h_{ow} + \frac{h_{hg}}{2} \right) \tag{4}$$

where \mathbf{b} = aeration factor, dimensionless. Again, found in references as a function of $U_a \mathbf{r}_g^{1/2}$ where U_a is the linear gas velocity through active area, ft/s.

 h_s = static slot seal (weir height minus height of top of slot above plate floor), in.

 h_{ow} = height of crest over weir, in. clear liquid

 h_{hg} = hydraulic gradient across plate, in. clear liquid

The Francis equation:

$$h_{ow} = 0.48 \left(\frac{q'}{L_w}\right)^{2/3}$$
(5)

where

q' = liquid flow rate, gal/min

 L_w = length of weir, in.

Hydraulic gradient data, h_{hg} are again found in correlations in the references. These have to be corrected for gas flow effects using another correlation which gives the correction factor C_{yf} . Thus

$$h_{hg} = C_{vf} h'_{hg} \tag{6}$$

References

- 1. Smith, B. D., "Design of Equilibrium Stage Processes," McGraw-Hill, 1963.
- 2. Robinson, C. S. and E. R. Filliland, "Elements of Fractional Distillation," 5th ed., McGraw-Hill, 1952.

Parameters needed for the theoretical calculations

Tower diameter	60 cm
air channel diameter	31.4 cm
downcomer area	0.026 m^2
weir length	0.43 m
weir height	5.0 cm
skirt clearance	1.25 cm
slot height	15 mm
slot width	3 mm
number of slots	24
riser area	2.07 in ² /cap
reversal area	1.914 in ² /cap
annulus area	2.153 in ² /cap
ρ_v (air)	1.185 g/cm^3
ρ_{e} (water)	1000 g/cm ³
static slot seal	27 mm