BUBBLE-CAP TRAY HYDRAULICS

Theory

A schematic of a bubble-cap tray is given in Figure 1 of the schematics.
The pressure drop for vapor flow from one tray to the next is designated h_{t} and has the value that would be read from a manometer tapped to the vapor space of adjacent trays (see Figure 1) h_{t} is segregated into the following resistances:

$$
\begin{equation*}
h_{t}=h_{c d}+h_{s o}+h_{l} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{c d}=\text { drop through dry caps, in. liquid } \\
& h_{s o}=\text { drop through wet slots, in. liquid } \\
& h_{l}=\text { drop through aerated mass over and around bubble cap, in. liquid }
\end{aligned}
$$

Equations used for calculating the various terms in Eq. (1) are:

$$
\begin{equation*}
h_{s o}=1.20\left(\frac{\rho_{g}}{\rho_{l}-\rho_{g}}\right)^{1 / 5} h_{s h}^{4 / 5} U_{s}^{2 / 5} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \rho_{g}=\text { gas density, lb/ft } \mathrm{t}^{3} \\
& \rho_{l}=\text { liquid density, } \mathrm{lb} / \mathrm{ft}^{3} \\
& h_{s h}=\text { slot height, in. } \\
& U_{s}=\text { linear gas velocity through slots, } \mathrm{ft} / \mathrm{s} \\
&=\text { volumetric vapor flow rate/slot area per tray } \\
& h_{c d}=k_{2} \frac{\rho_{g}}{\rho_{l}} U_{h}^{2} \tag{3}
\end{align*}
$$

where $\quad k_{2}$ is called a dry-cap head-loss coefficient. It is a function of the annular/riser area and can be found in references like those listed below. (If you have trouble locating
this or any other correlation, see the teaching assistant.)
$U_{h}=$ linear gas velocity through risers, ft / s
$=$ volumetric vapor flow rate/total riser area per tray
$h_{l}=\beta\left(h_{s}+h_{o w}+\frac{h_{h g}}{2}\right)$
where
$\beta=$ aeration factor, dimensionless. Again, found in references as a function of $U_{a} \rho_{g}^{1 / 2}$ where U_{a} is the linear gas velocity through active area, ft / s.
$h_{s}=$ static slot seal (weir height minus height of top of slot above plate floor), in.
$h_{o w}=$ height of crest over weir, in. clear liquid
$h_{h g}=$ hydraulic gradient across plate, in. clear liquid
The Francis equation:

$$
\begin{equation*}
h_{o w}=0.48\left(\frac{q^{\prime}}{L_{w}}\right)^{2 / 3} \tag{5}
\end{equation*}
$$

where $\quad q^{\prime}=$ liquid flow rate, $\mathrm{gal} / \mathrm{min}$
$L_{w}=$ length of weir, in.
Hydraulic gradient data, $h_{h g}$ are again found in correlations in the references. These have to be corrected for gas flow effects using another correlation which gives the correction factor $C_{\text {vf }}$. Thus

$$
\begin{equation*}
h_{h g}=C_{v f} h_{h g}^{\prime} \tag{6}
\end{equation*}
$$

References

1. Smith, B. D., "Design of Equilibrium Stage Processes," McGraw-Hill, 1963.
2. Robinson, C. S. and E. R. Filliland, "Elements of Fractional Distillation," 5th ed., McGraw-Hill, 1952.
3. Perry's Chemical Engineers' Handbook, 5th edition, 1973.

Parameters needed for the theoretical calculations

Tower diameter	60 cm
air channel diameter	31.4 cm
downcomer area	$0.026 \mathrm{~m}^{2}$
weir length	0.43 m
weir height	5.0 cm
skirt clearance	1.25 cm
slot height	15 mm
slot width	3 mm
number of slots	24
riser area	$2.07 \mathrm{in}^{2} / \mathrm{cap}$
reversal area	$1.914 \mathrm{in}^{2} / \mathrm{cap}$
annulus area	$2.153 \mathrm{in}^{2} / \mathrm{cap}$
ρ_{v} (air)	$1.185 \mathrm{~g}^{2} / \mathrm{cm}^{3}$
ρ_{e} (water)	$1000 \mathrm{~g}^{2} / \mathrm{cm}^{3}$
static slot seal	$27 \mathrm{~mm}^{\text {n }}$

