COOLING TOWER SPREADSHEET DETAILS

Details of the Excel Spreadsheet are presented here. There are five sections, as follows:
Section 1 Laboratory Data
Data from the Laboratory Data Sheet are entered into the spreadsheet in the same order as they appear on the Data Sheet. Some parameters of the column operation are then calculated.

Section 2 NTU Calculation

An analytical calculation of the NTU's is performed using a $2^{\text {nd }}$ order regression fit for the water line. The HTU's and $\mathrm{K}_{\mathrm{y}} \mathrm{a}$'s are also calculated.

Section 3 Evaporation Rate

The rate of evaporation is calculated.

Section 4 Khodaparast's NTU Calculation

This section uses the analytical integration of Khodaparast. This integration utilizes a different regression fit from that in Section 2.

Section 5 Summary

This section summarizes some of the results of the previous calculations.
A "Test Run" is included which serves as basis for copying all of the equations over into the adjacent columns. Data entires are shown in parenthese () and calculation results are shown in brackets.

Cell	Cell Entry	Notes and Equation Numbers	Test Run Entries o Results
A1	Analysis of Cooling Tower Data		
A2	Damper Position = Fill it in here		
A3	Date due Fill it in here		
A4	See Word Spreadsheet File		
A5	for details.		
A6	\# = Symbol for humidity		
A7	Laboratory Data	Underline it or put a dashed line in Cell A8.	
B7			
A8	A dashed line below the title in A7		
B8	Test Run		
A9	$\mathrm{H}_{2} \mathrm{O}$ rate, liters/min		
B9	A data entry		(10.5)
A10	Hot water tank temp, ${ }^{\circ} \mathrm{C}$		
B10	A data entry		
A11	Manometer Press. Drop, Inches of $\mathrm{H}_{2} \mathrm{O}$		
B11	A data entry		(19.5646)
A12	$\mathrm{T}_{\text {xa }}$, Inlet water, ${ }^{\circ} \mathrm{C}$		
B12	A data entry		(43.3)
A13	$\mathrm{T}_{\text {xb }}$, Outlet water, ${ }^{\circ} \mathrm{C}$		
B13	A data entry		(22.5)
A14	T_{yb}, Inlet air dry bulb, ${ }^{\circ} \mathrm{C}$		
B14	A data entry		(21.0)
A15	$\mathrm{T}_{\text {wbb }}$, Inlet air wet bulb, ${ }^{\circ} \mathrm{C}$		

B15	A data entry		(14.1)
A16	$\mathrm{T}_{\text {ya }}$, Outlet air dry bulb, ${ }^{\circ} \mathrm{C}$		
B16	A data entry		(44.0)
A17		This is a blank row.	
B17			
A18	T_{xa}, Inlet water, ${ }^{\circ} \mathrm{F}$		
B18	$=(\mathrm{B} \$ 12+40)^{*} 1.8-40$	Equation to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$	[109.9]
A19	T_{xb}, Outlet water, ${ }^{\circ} \mathrm{F}$		
B19	$=(\mathrm{B} \$ 13+40)^{*} 1.8-40$	Equation to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$	[72.5]
A20	T_{yb}, Inlet air dry bulb, ${ }^{\circ} \mathrm{F}$		
B20	$=(B \$ 14+40)^{*} 1.8-40$	Equation to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$	[69.8]
A21	$\mathrm{T}_{\text {wbb }}$, Inlet air wet bulb, ${ }^{\circ} \mathrm{F}$		
B21	$=(\mathrm{B} \$ 15+40)^{*} 1.8-40$	Equation to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$	[57.4]
A22	T_{ya}, Outlet air dry bulb, ${ }^{\circ} \mathrm{F}$		
B22	$=(\text { B } 16+40)^{*} 1.8-40$	Equation to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$	[111.2]
A23		This is a blank row.	
B23			
A24	$\mathrm{G}_{\mathrm{x},}$, lb $\mathrm{H}_{2} \mathrm{O} /\left(\mathrm{h}, \mathrm{ft}^{\wedge} 2\right)$		
B24	= B9*0.035315*62.4*60	Liters $/ \mathrm{min} \times 0.35315 \mathrm{ft}^{3} / \mathrm{liter} \times 62.4 \mathrm{lb} / \mathrm{ft}^{3} \times 60$ $\mathrm{min} / \mathrm{hr}$	[1388]
A25	\# b , lb $\mathrm{H}_{2} \mathrm{O} / \mathrm{lb} \mathrm{DA}$		
B25	$\#_{\mathrm{b}}=\#_{\text {wb }}+0.000231(\mathrm{~B} 21-\mathrm{B} 20)$	See details below	[0.0070]

The following equations are involved in calculating $\#_{\mathrm{wb}}$:
$\#_{w b}=\frac{M_{A} P_{A}^{\prime}}{M_{B}\left(1-P_{A}^{\prime}\right)}=\frac{M_{A}}{M_{B}}-1$ Equation (23.3) in MS\& H
where $\quad M_{A}=18.02 \quad$ Molecular weight of water
and $\quad P_{A}^{\prime}=\exp { }^{1 \rightarrow} 3036-\frac{6869.592}{T_{w b}+376.666}$ Antoine's Equation

A26	H_{yb}, Btu/lb DA		
B26	$=0.24 *$ B20 + B25*1075.8+0.45*(B20-32)		[24.432]
A27	$\mathrm{V}_{\mathrm{H}}, \mathrm{ft}^{3} / \mathrm{lb}$ DA		
B27	Equation (23.7a)	Note that T here is in ${ }^{\circ} \mathrm{R}$	[13.487]
A28	Vol. air rate, $\mathrm{ft}^{3} / \mathrm{h}$		
B28	$=(1.3328 * \mathrm{LN}(\mathrm{B} 11)+5.9569) * 3600$	Regression fit of Pitot Tube Calibration	[35713]
A29	$\mathrm{G}^{\prime}, \mathrm{lb} \mathrm{DA} /\left(\mathrm{h}, \mathrm{ft}^{2}\right)$		
B29	=B28/B27	Entering air rate/v v_{H}	[2648]
A30	$\mathrm{s}=\mathrm{G}_{x} \mathrm{c}_{L} / \mathrm{G}^{\prime}, \mathrm{Btu} /\left(\mathrm{lb} \mathrm{DA},{ }^{\circ} \mathrm{F}\right)$		
B30	=B24/B29	Operating Line Slope Equation(12)	[0.5243]
A31		This row is blank	
B31			
A32	Analytical Integration	Underline it or put a dashed line in cell A32	
B32			
A33	================		
B33	This cell is blank		

A34	$\mathrm{s}=\mathrm{G}_{x} \mathrm{C}_{L} / \mathrm{G}^{\prime}, \mathrm{Btu} /\left(\mathrm{lb} \mathrm{DA},{ }^{\circ} \mathrm{F}\right)$		
B34	=B30		[0.5243]
A35	gamma		
B35	100.081		[100.081]
A36	alpha		
B36	-2.52683		$\begin{aligned} & \hline[- \\ & \text { 2.52683] } \\ & \hline \end{aligned}$
A37	beta		
B37	0.0022464		$\begin{aligned} & {[0.02246} \\ & 4] \end{aligned}$
A38	T_{xb}, ${ }^{\circ} \mathrm{F}$		
B38	=B19		[72.5]
A39	$\mathrm{H}_{\text {yb }}$, Btu/lb DA		
B39	=B26		[24.432]
A40	f		
B40	=B26-B34*B38	$\mathrm{f}=\mathrm{H}_{\mathrm{yb}}-\mathrm{s} \mathrm{T}_{\mathrm{xb}} \quad$ Equation (14)	[-13.581]
A41	$a=$ gamma -f		
B41	=B35-B40	Equation (16)	[113.662]
A42	$\mathrm{b}=$ alpha -s		
B42	=B36-B34	Equation (17)	[-3.051]
A43	c = beta		
B43	=B37	Equation (18)	$[0.02246$
A44	sart delta		
B44	=SQRT ((4*B41*B43)-B42^2)	Square Root of (4ac-b ${ }^{2}$)	[0.951]
A45	$\mathrm{T}_{\text {xa }},{ }^{\circ} \mathrm{F}$		
B45	=B18		[109.9]
A46	Numer1		
B46	=2*B43*B38+B42	Numerator of $1^{\text {st }} \mathrm{tan}^{-1}$ term of Equation (20)	[0.206]
A47	Numer2		
B47	=2*B43*B45+B42	Numerator of $2^{\text {nd }} \tan ^{-1}$ term of Equation (20)	[1.888]
A48	NTU		
B48	$\begin{aligned} & =\text { B34*2/B44*(ATAN2(B44,B47)- } \\ & \text { ATAN2(B44,B46)) } \end{aligned}$	Equation (20)	[0.983]
A49		This row is blank.	
B49			
A50	HTU, ft		
B50	=6/B48	Equation (21) where $\mathrm{Z}_{\mathrm{T}}=6 \mathrm{ft}$	[6.106]
A51	$\mathrm{K}_{\mathrm{y}} \mathrm{a}, \mathrm{lb} \mathrm{DA} /\left(\mathrm{h}, \mathrm{ft}^{3}\right)$		
B51	= B29/B50	Equation (24)	[433.7]
A52		This row is blank	
B52			
A53	Evaporation Rate	Underline it or put a dashed line in cell A54	
B53			
A54	=============		
B54			
A55	T_{yb}		
B55	=B20		[69.8]
A56	$\mathrm{T}_{\text {wbb }}$		
B56	= ${ }^{\text {2 }} 1$		[57.4]
A57	\#b		
B57	= ${ }^{\text {2 }}$ 25		[0.0070]
A58	H_{yb}		
B58	=B26		[24.432]
A59	Cal'd H_{ya}, Btu/lb DA		

B59	= $\mathrm{B} 58+\mathrm{B} 30 *$ (B18-B19)	$\mathrm{H}_{\mathrm{ya}}=\mathrm{H}_{\mathrm{yb}}+\mathrm{s}\left(\mathrm{T}_{\mathrm{xa}}-\mathrm{T}_{\mathrm{xb}}\right)$	[0.01563]
A60	Cal'd \#, lb H2O/Lb DA		
B60	=(B59-0.24*B22)/(1075.8+0.45(B22-32))	$\#_{\mathrm{a}}=\left(\mathrm{H}_{\mathrm{ya}}-0.24 \mathrm{~T}_{\mathrm{y}} \mathrm{l} /\left(1075.8+0.45\left(\mathrm{~T}_{\mathrm{ya}}-32\right)\right)\right.$	[0.01563]
A61	$\mathrm{G}_{\mathrm{xe}}=\mathrm{G}^{\prime}{ }^{\prime}\left(\#_{\mathrm{a}}-\#_{\mathrm{b}}\right)$	This is the evaporation, $\mathrm{lb} \mathrm{H}_{2} \mathrm{O} /\left(\mathrm{h}, \mathrm{ft}^{2}\right)$	
B61	=B29**(B60-B25)		[22.783]
A62	Percent Evaporation		
B62	=B61/B24*100	$\left(\mathrm{G}_{\mathrm{x}} / \mathrm{G}_{\mathrm{x}}\right)^{*} 100$	[1.641]

Enter all of your data, beginning in Column C and copy all of the equations from Column B across. Retain the "test run" in Column B.

