CE 407 Notes

Countercurrent Contact

Absorption: outcomes of different schemes for gas-liquid contact
1.0 mol of a contaminated gas stream (composition 90 mole percent air, 10 mole percent benzene) is contacted with 2.0 mol of an absorption oil in order to remove some of the benzene. Determine the benzene mole fraction in the exiting gas stream for each of the three schemes indicated below. Neglect any evaporation of oil, as well as dissolution of air in the liquid. The equilibrium relation is $y=2.5 x$.

scheme 1

$$
2 \mathrm{~mol} 0 i l
$$

$$
2 \text { moloil }
$$

($0.10-N)_{\mathrm{mal}}$ Benzene

$$
x_{1}=\frac{0.10-N}{2+(0.10-N)}
$$

Exiting streams at equilibrium $\Rightarrow y_{1}=2.5 x_{1}$ or $\left(\frac{N}{0.90+N}\right)=2.5\left(\frac{0.10-N}{2.10-N}\right)$

Solve for N because Elroy says so:

$$
\begin{gathered}
N(2.10-N)=(2.5)(0.90+N)(0.10-N) \\
2.10 N-N^{2}=(2.5)\left(0.09-0.80 N-N^{2}\right) \\
(2.50-1) N^{2}+[2.10+(2.5)(0.00)] N-(2.5)(0.09)=0 \\
(1.50) N^{2}+4.10 N^{2}-0.225=0 \\
N=\frac{-4.10+5) \sqrt{(4.10)^{2}-4(1.50)(-0.221)}}{2(1.50)}=0.0538 \\
+\begin{array}{c}
\text { choose } \\
+r o o t
\end{array}
\end{gathered}
$$

Then $y_{1}=N /(0.9+N)=0.0664$
scheme 2

($0.10-\mathrm{N}_{2}$) mol tenure

Lower stage
Exiting streams at equil. $\Rightarrow y_{2}=2.5 x_{2}$
or $\left(\frac{N_{2}}{0.90+N_{2}}\right)=2.5\left(\frac{0.10-N_{2}}{1+\left(0.10-N_{2}\right)}\right)$
Solve for N_{2} as before $\Rightarrow N_{2}=0.0702$
upper stage
Exiting streams at equil $>y_{1}=2.5 x$, or $\left(\frac{N_{1}}{0.90+N_{1}}\right)=2.5\left(\frac{1}{1+\left(0.0702-N_{1}\right)}\right)$

Solve for $N_{1} \Rightarrow N_{1}=0.0491$ \checkmark smaller, Then $y_{1}=N_{1} /\left(0.90+N_{1}=0.0517\right.$, 17 petter!
seteme 3

By Benzere balaner around stgxe 1 and stage 2:

$$
\begin{align*}
& \left(L_{\text {sen2 }}\right)_{1}+\left(V_{\text {sen2 }}\right)_{1}=0+\left(V_{\text {sen2 }}\right)_{2} \tag{1}\\
& \left(L_{\text {sen2 }}\right)_{2}+\left(V_{\text {sen2 }}\right)_{2}=\left(L_{\text {sene }}\right)_{1}+0.10 \tag{2}
\end{align*}
$$

Equil relations for stages 1 and 2:

(an write ($\left.L_{\text {denz }}\right)_{1}$ and (Leenv) ${ }_{2}$ in terms of ($V_{\text {senz }}$), and ($\left.V_{\text {senz }}\right)_{2}$ wherever they appean in (3) and (4) using material balance relations (1) and (2):

MatLab Code to solve these equations:

```
    # The two unknowns are Vbenzl and Vbenz2
    #
    * Equation (5) can be written as f1 (Vbenz1,vBenz2) - 0,
    # where f1 (Vbenz1, Vbenz2) is the function
    #
    f1 := (Vbenz1,Vbenz2) }->\mathrm{ Vbonz1 / (0.9 + Vbenz1)
                            -2.5 * (Vbenz2 - Vbenz1) / (2 + Vbenz2 - Vbenz1):
    #
    # Equation (6) can be written as }22(\mathrm{ Vbenz1,vBenz2) = 0,
    | where &2 (Vbenz1, Vbenz2) is the function
    #
    f2 := (Vbenz1, Vbenz2) }->\mathrm{ (Vbenz2 / (0.9 + Vbenz2)
            -2.5 *(0.1 - Vbenz1)/(2+0.1 - Vbenz1) :
    #
    * Solve the two equations simultaneously for the two
    # unknowns
    |
    fsolve ({&1 (Vbenz1, Vbenz2) = 0, f2(Vbenz1,Vbenz2) = 0},
        {Vbenz1, Vbenz2},
        {Vbenz1 =0..0.1, Vbenz2 = 0..0.11);
    #
    #Wat fun!
    #
        {(Wensl =.03871656720, Vhenz2 = .07226536409)
```

$>$
\sim
rutero 1

