CE 407 Lecture Notes 9/19/2017

Partial Condenser

(a)

(b)

(c)

(a)

(b)

FIGURE 21.8
Graphical construction for top plate: (a) using total condenser; (b) using partial and final condensers.

FOR TOTAL CONDENSER
Mole faction in Reflux is equal to mole FRACTIO., in PRODUCT is EQUAL TO MOLE FRACTION IN VAPOR COMING FROM TOP PLATE

FOR PARTIAL CONDENSER
vapor leaving partial condenser has same mole fraction as liquid leaving final CONDENSER.

LIQUID LEAVING PARTIAL CONDENSER IS IN EQUILIBRIUM WITH VAPOR LEAVING PARTIAL CONDENSe:

PARTIAL CONDENSER BEHAVES LIKE AN ADDITIONAL THEORETICAL STAGE

NEARLY PURE PRODUCTS

* when either product becomes nearly pure THE MC LABE - THIELE STEPS BECOME TOO SMALL TO ACCURATELY BE DRAWN.
- With nearly pure product the major COMPONENT FOLLOWS RAOULT'S LAW AND THE MINOR COMPONENT FOLLOWS HENRY'S LAW
* ANALYZE THE PROCESS AS FOLLOWS:
- Choose A High (but not excessively high) VALUE FOR $\chi_{\text {cutoff }}$ (sAY $\chi_{\text {cutoff }}=0.9$)
- use standard mccabe-thiele to DETERMINE \# OF STAGES TO ACHIEVE PRODUCT EQUAL TO THIS $x_{\text {cutoff }}$
- Due to low Fraction of Minor Component THE EQUILIDIUM CURVE IS APPROXIMATELY LINEAR BETWEEN CUT OFF X and X_{D}
- WE CAN USE KREMSER EQUATION TO GET THE NUMBER OF STAGES BETWEEN CUTOFF X and X_{D}
$\begin{array}{lc} & \text { EQ } \\ \text { (2) } & 20.24\end{array}$

$$
N=\frac{\ln \left[\left(y_{t}-y_{t}^{*}\right) /\left(y_{a}-y_{a}^{*}\right)\right]}{\ln \left[\left(y_{t}-y_{a}\right) /\left(y_{b}^{*}-y_{a}^{*}\right)\right]}
$$

WHERE y_{a} is the point on the operating line corresponding to $X_{a}=x_{D}$
y_{b} is point on op rime corresponding to

$$
x_{b}=x \text { cutoff chosen }
$$

y_{a}^{*} is pointion equilibrium line corresponding to $x_{a}=x_{D}$
y_{l}^{*} is point on equilibrium line corresponding to $x_{w}=x$ cutoff chosen

* $\quad y_{a}$ and y_{B} can be obtained from $y=\frac{R_{D}}{R_{D}+1} x+\frac{x_{D}}{R_{0}+1}$
* y_{b}^{*} is obtainal from Graph, locate value on equilibrium curve for $x=x$ cutoff

Now EQ LiNe Passes through
$\left(x_{\text {cut eft }}, y_{i}^{*}\right)$ and $(1,1)$ solve $y=m x+k$
for these two points.

* Now y_{a}^{*} canbe calculated to obtain final variable. $\quad y_{a}^{*}=m x_{D}+b$

Solve Equation 20.24 with these variables to solve for $N=$ \# ot stages between $x_{\text {cutoff }}$ and x_{0}
Add N to the number of stages between x_{l} ans $x_{\text {cutest }}$ to obtain total number of stages

Enthalpy Balances
Constant Molal Overflow Assumes

$$
\Delta H_{\text {VIp } A}=\Delta H_{\text {Var }}^{B} \text { AT EACH STAGE }
$$

THIS IS A GOOD APPROXIMATION BUT NOT TRULY ACCURATE

$$
\text { ENTRE SYSTEM FA } H_{F}+q_{r}=D H_{D}+B H_{B}+q_{C}
$$

Control Surface I $V_{n+1} H_{y_{j n+1}}=L_{n} H_{x_{n}}+D H_{0}+q_{c}$ Around Condenser $q_{C}=V_{A} H_{y, a}-R H_{D}-D H_{D}$
combine these:

$$
\begin{gathered}
\text { combine } H_{a x}: \\
V_{n+1} H_{y, n+1} H_{x, n}+V_{a} H_{y, a}-R H_{D} \\
E Q 21.51
\end{gathered}
$$

we know $V_{a} H_{y}$ a and $R H_{D}$ WE ARE TRYING TO DETERMINE V_{n+1} am) L_{n}
(we are not assuming constant flows!)
Steps: - Choose value of x_{n}

- calculate $\mathrm{H}_{x, n}$
- Estimate y_{n+1} by assuming

$$
\begin{aligned}
& L_{N} \approx L_{0}, V_{n+1} \approx V_{1} L_{n} x_{n} \\
& \quad \text { in } \varepsilon_{q} \quad y_{n+1}=\frac{D x_{D}}{V_{n+1}}+\frac{V_{n+1}}{V_{n+1}}
\end{aligned}
$$

Fran PulsE Dingran git T
CALCuLATE Hy,n+1
-solve $V_{n+1}=\frac{V_{1} H_{y, 1}-L_{0} H_{0}-D H_{x, n}}{H_{y, n+1}-H_{x, n}}$

- use new value of V_{n+1}, cal L_{n}

$$
L_{n}=V_{n+1}-D
$$

- get improved y_{n+1}

$$
y_{n+1}=\frac{\operatorname{Ln} x_{n}}{V_{n+1}}+\frac{D x_{0}}{V_{n+1}}
$$

Do this for several X_{n} to get curvature of operating line.
WHERE Do the H 's come FROM!?!
A) Enthalpies are calculate relative to a reference point.

Choose Saturated liquid at the lower BOILING POINT of the TWO COMPONENTS To BE $H=0$ at. $T=T_{A_{B P}}$

$$
\begin{aligned}
\text { LIQUIDS } \quad H_{A x}(T) & =H_{A l}\left(T_{A_{B P}}^{0}\right)+C_{P_{A}, l}\left(T-T_{A_{B P}}\right) \\
& =C_{P_{A, l}}^{0}\left(T-T_{A B P}\right) \\
H_{B x}(T) & =H_{B}\left(T_{A B P}^{0}\right)+C_{P_{B, l}}\left(T-T_{A B P}\right)
\end{aligned}
$$

VAPOR PHASE ENTHALPIES

$$
\begin{aligned}
& +C_{P, B V}\left(T_{A_{B P}}-T_{B_{B P}}\right)+C_{P_{B U}}\left(T-T_{A_{B P}}\right)
\end{aligned}
$$

IDEAL SOLUTION: NO HEAT OF MIXING

$$
\begin{aligned}
& H_{x}=x H_{x_{A}}+(1-x) H_{x_{B}} \\
& H_{y}=y H_{y_{A}}+(1-y) H_{y_{B}}
\end{aligned}
$$

Design of Columns

FIGURE 21.24
Normal operation of sieve plate.

So far we have talked about number of I DEAL StagES: WHAT IS A Stage?

- the liquid needs to go down, the vapor NEEDS TO GO UP.
- the vapor needs to bubble thronghthe liquid
- they need time to equilibrate
- Gravity brings liquio Down, Pressure from boiling PROVIDES FORCE TO DRIVE VAPOR UPWARD

$$
\text { - } P_{n+1}>P_{n}>P_{n-1}
$$

- THINK Of DOWNCOME I SIMILAB TO MANOMETER WHAT CAN GO WRONG?
* Flooding - Pressure conses liquid to back up the downcomer
* WEEPING - Low Pressure Allows liquid to pass thru holes
* channeling causes lianio er viator to pass thrace IN A NON-UNIFORM MANNER

Vapor Pressure Drop

$$
\begin{aligned}
& h_{t}=h_{d}+h_{l}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mm of liquid } \\
& \text { ie. the liquid } \\
& \text { in the column } \\
& h_{d}=51.0\left(\frac{u_{0}{ }^{2}}{c_{0}^{2}}\right)\left(\frac{\rho_{V}}{\rho_{L}}\right) \text { or } 0.186\left(\frac{u_{0}{ }^{2}}{c_{0}^{2}}\right)\left(\frac{\rho_{V}}{\rho_{L}}\right)
\end{aligned}
$$

$U_{0}=$ vapor verity though holes m / s or ft / s h_{d} mon of liquid or

$$
\begin{aligned}
& e_{V}=\text { vapor density } \\
& e_{L}=\text { liquid density }
\end{aligned}
$$

FIGURE 21.25
Discharge coefficients for vapor flow, sieve trays. [I. Liebson, R. E. Kelley, and L. A. Bullington, Petrol. Refin., 36(2):127, 1957; 36(3):288, 1957.]

Head of Liquid on PLATE

$$
h_{l}=\beta\left(h_{w}+h_{o w}\right) \quad \sec \text { fig } 21.24
$$

h_{w} is height of weir \Rightarrow design parameter how is how high above weir the lignill level is

$$
\begin{aligned}
& h_{\text {ow }}=43.4\left(\frac{q_{L}}{L_{w}}\right)^{2 / 3} \\
& h_{\text {ow }}=\text { height, mm } \\
& q=\text { flow rate of clear liquid, } \mathrm{m}^{3} / \mathrm{min} \\
& L_{w}=\text { length of weir, } \mathrm{m} \\
& 0.4<\beta<0.7
\end{aligned}
$$

use $\beta \approx 0.6$
h_{d} tends to be significantly $>h_{l}$
$\frac{\text { Down comer Level }}{\text { Will we flood? }}$

$$
\begin{aligned}
& z_{c}= 2 \beta\left(h_{w}+h_{o w}\right)+h_{d}+h_{f L L} \\
& h_{w}=h_{i g h t} \text { of weir } \\
& h_{o w}=\text { height of liquid n bore weir } \\
& h_{d}=\Delta P \text { through holes } \\
& h_{f, L}=\Delta P \text { from flow through down comer }
\end{aligned}
$$

(THiNK of similarity to Manometer)
Actual level $Z=\frac{Z_{c}}{\varnothing_{d}}$ due to entrained air

$$
\phi_{d}=0.5
$$

FLOODING CORRELATION
Maximum Acceptable velocity, u_{c}

$$
u_{c}=K_{v} \sqrt{\frac{e_{L}-e_{V}}{e_{v}}}\left(\frac{\sigma}{20}\right)^{0.2}
$$

$U_{c}=$ max vapor velocity bass on bubbling are $\frac{\mathrm{ft}}{\mathrm{s}}$ $\sigma=$ surface tension of liquid, $\frac{d y n}{c m}$

FIGURE 21.26
Values of K_{v} at flooding conditions for sieve plates; $L / V=$ ratio of mass flow rate of liquid to vapor, u is in feet per second, and σ is in dynes per centimeter. [J. R. Fair Petrol. Chem. Eng., 33(10):45, 1961. Courtesy Petroleum Engineer.]

$$
\frac{L}{V}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{1 / 2}
$$

With U_{c} and Knowing V and \bar{V} as well as what fraction of plate is open for bubbling, wean calculate Column DIAMETER

