Problem can be worked out four different ways:

Considenng gas region (which haw an Elroy-joyous complicated shape) of control volume:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { rate solute in } \\
\text { (at bottom) }
\end{array}\right]=V y / z .} \\
& {\left[\begin{array}{l}
\text { rate solute out } \\
\text { (at top) }
\end{array}\right]=V y / z+\Delta z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mol solute }\langle\text { time }
\end{aligned}
$$

At steady stake, rate in $=$ rate out
\Rightarrow

$$
V_{\left.y\right|_{2}}=V_{\left.y\right|_{z+\Delta z}}+k y\left(y-y_{i}\right) a, S \Delta z
$$

or

$$
\frac{V_{y} /_{z+\Delta z}-V_{y} /_{z}}{\Delta z}=-k_{y} a, S\left(y-y_{i}\right)
$$

On $\Delta z>0$ (thin slice),

$$
\frac{d}{d z}(V y)=-k y a S\left(y-y_{0}\right)
$$

Dilute mixture $\Rightarrow V$ s constant

$$
\Rightarrow \quad V \frac{d y}{d z}=-k y a S(y-y:)
$$

$\stackrel{N o w}{\Rightarrow}$ sepanate voniabler (because Elroy says so!)

$$
d z=-\frac{(U / S)}{b_{y} a} \frac{d y}{y-y_{i}}
$$

Integrate from sottom of towes

$$
\int_{0}^{z_{T}} d z=\underbrace{-\frac{(V / 5)}{k_{y} a}}_{\text {conre. }} \int_{y_{1}}^{y_{a}} \frac{d y}{s-y_{i}}
$$

or

$$
Z_{T}=\frac{V / 5}{b_{y} a} \int_{y_{a}}^{y_{i}} \frac{d y}{y-y_{i}}
$$

Note: If $y-y_{i}$ is constant, then can pul $\left(y-y_{i}\right)^{-1}$ out of integral, so that

$$
N_{y}=\frac{y_{b}-y_{a}}{y-y_{i}}=\frac{(\text { tool conc. change })}{\binom{\text { over tower }}{\text { dor mong five transfer }}}
$$

If y-y y_{i} not constant, then you would expect

$$
N_{y}=\frac{y_{0}-y_{a}}{\left(y-y_{i}\right)} \text {, } \begin{gathered}
\text { average droving } \\
\text { forme }
\end{gathered}
$$

but what average to take? If op. line and equil. curve both perfectly straight, then the correct mean is the

$$
\angle O G A R I T H M I C \quad M E A N
$$

... which brings us to an important question:
(ii) How do you calculate the interfacial gor-phase solute mole fraction y_{i} ?

Time to fetch the microscope?

$\left[\begin{array}{c}\text { rate of solute } \\ \text { transfer from bulk } \\ \text { gov to interface }\end{array}\right]=\left[\begin{array}{c}\text { rato o/ solute } \\ \text { tranites from interface } \\ \text { to seek liquid }\end{array}\right]$

or $\quad y-y_{i}=-\left(\frac{k_{x}}{n_{y}}\right)\left(x-x_{i}\right)$
Equit. at interface $\Rightarrow y_{i}=y^{*}\left(x_{i}\right)$, i.e. y_{i} and x_{i} satisfy the equal. relation.

For general use $H^{\text {Fly }}=\frac{V / 5}{\text { ky } a}$ (see page 3 ar book eq. (22-19)); $\quad H_{x}=\frac{L / 5}{k_{x} a}$ (book cq. (22-20)).

$$
\therefore \quad \frac{k_{x}}{k_{y}}=\frac{(L / S)}{H_{x} a} \cdot \frac{H_{y} a}{(U / S)}=\left(\frac{L}{V}\right) \frac{H_{x}}{H_{x}}
$$

Also, for dilute systems L / V is cont.
$=$ slope of neanly-straight operating line \dagger.
\therefore here (using bottom of tower $(x, y)=\left(x_{0}, y ⿻\right)$),

$$
\frac{L}{V}=\frac{y_{0}-y_{a}}{x_{8}-x_{a}}=\frac{0.009-0.001}{0.08-0}=0.1
$$

Then
$\left\{\begin{array}{l}\text { N } Y \in T \\ A N O T H G R\end{array}\right.$

$$
\frac{k_{x}}{k_{y}}=\frac{L}{V} \frac{H_{y}}{H_{x}}=(0.1)\left(\frac{0.36 \mathrm{~m}}{0.24 \mathrm{~m}}\right)=0.15
$$

Oho in this problem equil. relation is $y=0.06 x$ so that

$$
y_{i}=0.06 x_{i} \text { or } x_{i}=\frac{y_{i}}{0.06} \text {. }
$$

Use there facts in the eqr. at bottom of page $\sqrt{5} \Rightarrow$

$$
y-y_{i}=(-0.15)\left(x-\frac{y_{i}}{0.06}\right)
$$

t we ALL remember the exact eq. for the op. live. We also ALL remember that at low concentration tho op lie is nearly a straight eve, given to good approx. by

$$
y-y_{a}=\frac{L}{V}\left(x-x_{a}\right) \quad \text { from solute }
$$

Solve for $y_{i} \Rightarrow$

$$
y_{:}=\frac{y+0.15 x}{3.5}
$$

(a) at top of tower

$$
y_{i}=\frac{0.001+0.15(0)}{3.5}=2.857 \times 10^{-4}
$$

(b) at bottom of tower

$$
y_{i}=\frac{0.009+0.15(0.08)}{3.5}=0.006
$$

Then

$$
\begin{aligned}
\left(y-y_{i}\right)_{a} & =\text { driving fence at top of towers } \\
& =0.001-0.0002857=0.0007143
\end{aligned}
$$

$$
\left(y-y_{i}\right)_{1}=\text { dining fosse ot bottom of towers }
$$

$$
=0.009-0.006=0.003
$$

and

The lognithmic mean of two numbers A and B is $(A-B) / \ln (A / B)$.

$$
\begin{aligned}
& \overline{\left(y-y_{i}\right)_{L}}=\operatorname{loganithmic~mean~of~}^{t}\left(y-y_{i}\right)_{a} \\
& \text { and (y-yi)s } \\
& =\frac{0.003-0.0007143}{\ln \left(\frac{0.003}{0.0007143}\right)}=1.593 \times 10^{-3}
\end{aligned}
$$

(cii) Let's finith this protlem up!

$$
\begin{aligned}
N_{y} & =\frac{y_{6}-y_{a}}{\left(y-y_{0}\right)_{L}}=\frac{0.009-0.001}{1.593 \times 10^{-3}} \\
& =5.022
\end{aligned}
$$

Finall $Z_{T}=H_{y} N_{y}=(0.36 \mathrm{~m})(5.022)$

$$
Z_{T}=1.81 \mathrm{~m}
$$

Agory joy trauma \#2
(i) By same tund of derviation Calready done in clas !) based on solute flux given by overall man tromston coefficent, ise.

$$
N_{A}=f l u x=K_{y}\left(y-y^{*}\right) \text {, }
$$

(satue) wored be in equil.
with buek lisquid. with buek liguid
get equation

$$
\underbrace{\frac{V / s}{K_{y} a} \underbrace{\int_{y_{a}}^{y_{b}} \frac{d y}{y-y^{*}}}_{\text {call this }} N_{O_{y}}}_{\text {call thrs } H_{O_{y}}}
$$

From mars trumston theory we ALL know that ${ }^{t}$

This is where the equation
F of ore moe e TIME.
rate solute fum bulk gar to intoner $=$ rate site from intros solute fred liquid ind

$$
\Rightarrow \begin{aligned}
& k_{y}\left(y-y_{i}\right)=k_{x}\left(x_{i}-x\right) \\
& \left(y_{i}-y\right)=-\frac{k_{x}}{k_{y}}\left(x_{i}-x\right)
\end{aligned}
$$

to sued liquid

At a green crase-section of touter, x and y have definite value. \therefore this eq. represents linear relation that must be satisfied by x_{i} and y_{i}. And we al no know that x_{i} and y_{i} must be i on equil. curve.

$$
\therefore\left(x_{i} ; y_{i}\right)
$$

is pant of interrection pase.)

$$
\begin{aligned}
& \frac{1}{k_{y}}=\frac{1}{k_{y}}+\frac{m}{k_{x}} \text { slope of equip. } \\
& \therefore \quad \frac{\sqrt{a / 5}}{a k_{y}}=\frac{\sqrt{15}}{a \sqrt{k_{y}}}+\frac{1 / 5}{a} \frac{m}{k_{x}} \\
& \text { or } \\
& \underbrace{\frac{V / S}{a K_{y}}}_{H b_{y}}=\underbrace{\frac{V / s}{a k_{y}}}_{H_{y}}+\underbrace{\frac{L / 5}{a k_{x}}}_{H_{x}} m \cdot \frac{V}{L}
\end{aligned}
$$

$$
H_{0 y}=H_{y}+m \cdot \frac{V}{L} \cdot H_{x}
$$

(Eq. 22.26 m book) comer from. Note:
$V / L=\underbrace{(V / 5)}_{G_{M}} / \underbrace{(L / 5)}_{L_{M}}$ and book were notation
$G_{M}=V / S=$ molan veloci'ly Crupanicial, i.e., sared on towal towe crover-section) and simitan' $L_{M}=L / 5$. t (consimned) Now let's take a closer look at that graph.

By simitonity of

$$
\begin{equation*}
\frac{y-y_{i}}{x_{i}-x}=\frac{y-y^{*}}{l} \tag{2}
\end{equation*}
$$

abo, if $m=$ slope of chood drawn to cquel. curre, then

$$
\begin{aligned}
x_{i}-x & =\frac{y_{i}-y^{*}}{m} \\
& =\frac{y-y^{*}-\left(y-y_{i}^{-j}\right.}{m}
\end{aligned}
$$

(3)
(continuad newt pase)
(a) at top of town $y^{*}=(0.06)(0)=0$

$$
\therefore \quad(y-y)_{a}=0.001-0=0.001
$$

(4) At bottom of town $y^{*}=(0.06)(0.08)=0.0048^{\circ}$

$$
\therefore \quad(y-y)_{8}=0.009-0.0048=0.0042
$$

Logonithmic mean

$$
\overline{\left(y-y^{*}\right)_{L}}=\frac{0.0042-0.001}{\ln \left(\frac{0.0042}{0.001}\right)}=2.230 \times 10^{-2}
$$

Then

$$
N_{0 y}=\frac{y_{b}-y_{a}}{\left(y-y^{x}\right)_{L}}=\frac{0.009-0.001}{2.830 \times 10^{-2}}=3.507
$$

(coontimed)

$$
\begin{aligned}
\text { Sq: }^{(2)}+(3) \Rightarrow \frac{\left(y-y_{i}\right) \quad m}{\left(y-y^{*}\right)-\left(y-y_{i}\right)}=\frac{\partial-y^{*}}{l}=\frac{k_{x}}{k_{y}} \\
\text { by a. (1) }
\end{aligned}
$$

Solve for $\left(y-y_{i}\right) \Rightarrow$

$$
\left(y-y_{i}\right)=\frac{k_{x} / k_{y}}{m+k_{x} / k_{y}}\left(y-y^{*}\right)
$$

Then

$$
\begin{aligned}
& \text { en }_{A}=k_{y}\left(y-y_{0}\right)=\frac{k_{x}}{m+k_{x} / k_{y}}\left(y-y^{x}\right) \\
&=\left(\frac{1}{\left(\frac{m}{k_{x}}+\frac{1}{k_{y}}\right.}\right)\left(y-y^{*}\right) \\
& K_{y}=\frac{1}{\frac{1}{k_{y}}+\frac{m}{k_{x}}} \text { or this } K_{y} \\
& \frac{1}{k_{y}}=\frac{1}{k_{y}}+\frac{m}{k_{x}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& H_{o y}=H_{y}+\frac{m}{L N} H_{x} \\
& =(0.36 \mathrm{~m})+\frac{(0.06)}{0.1}(0.24 \mathrm{~m}) \\
& \text { slope of go line } \\
& \text { bread, colmbited } \\
& \text { on } p \text {. (} \sqrt{6} \\
& \text { Hoy }=0.504 \mathrm{~m} \\
& \text { Finally, } Z_{T}=H_{y} N_{0 y}=(0.504 \mathrm{~m})(3.587) \\
& Z_{T}=1.81 \mathrm{~m}
\end{aligned}
$$

Agony joy trauma \# 3
Same kind of derivation bared on flux exprescrom giver $=k_{x}\left(x_{i}-x\right)$ and liquid portion of control volume

We already computed y_{i} at top and bottom of town on p. 7. By equip relation
(a) At top of tower

$$
x_{i}=\frac{y_{i}}{0.06}=\frac{2.857 \times 10^{-4}}{0.06}=0.004762
$$

Then

$$
\left.\left(x_{i}-\right)_{a}\right)_{a}=0.004762-0=0.004762
$$

(s) at bottom of tower

$$
x_{i}=\frac{y_{i}}{0.06}=\frac{0.006}{0.06}=0.1
$$

Then

$$
\left(x_{i}-x\right)_{l}=0.1-0.08=0.02
$$

Logarithmic mean is

$$
\overline{\left(x_{i}-x\right)_{i}}=\frac{0.02-0.004762}{\ln \left(\frac{0.02}{0.004762}\right)}=1.062 \times 10^{-2}
$$

50

$$
N_{x}=\frac{x_{s}-x_{a}}{\left(x_{i}-x\right)_{L}}=\frac{0.08-0}{1.062 \times 10^{-2}}=7.533
$$

Finally,

$$
\begin{aligned}
& Z_{T}=H_{x} N_{x}=(0.24 \mathrm{~m})(7.533) \\
& Z_{T}=1.81 \mathrm{~m}
\end{aligned}
$$

$$
\underbrace{Z_{T}}=\underbrace{\frac{L / 5}{K_{x} a} \int_{x_{a}}^{x_{6}} \frac{d x}{x^{x}-x}}_{H_{O_{x}}}
$$

(a) At top of tower

$$
\begin{aligned}
x^{*} & =x \text { in eqwil with } y=\frac{y}{0.06} \\
& =0.001 / 0.06=0.01667
\end{aligned}
$$

50

$$
x^{*}-x=0.01667-0=0.01667
$$

is at bottom of towns

$$
x^{*}=y / 0.06=0.009 / 0.06=0.15
$$

so

$$
x^{x}-x=0.15-0.08=0.07
$$

Lgomithmi mean

$$
\overline{\left.x^{*}-x\right)_{L}}=\frac{0.07-0.01667}{\ln \left(\frac{0.07}{0.01667}\right)}=0.03717
$$

Then

$$
N_{0_{x}}=\frac{x_{0}-x_{a}}{\left(x^{*-x / 2}\right.}=\frac{0.08-0}{0.03717}=2.152
$$

Next, by eg. (22-29) in book,

$$
\begin{aligned}
H_{O_{x}} & =H_{x}+\frac{1}{m} \cdot \frac{L}{V} H_{y} \\
& =0.24 \mathrm{~m}+\left(\frac{1}{0.06}\right)(0.1)(0.36 \mathrm{~m}) \\
& =0.84 \mathrm{~m}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& Z_{T}=H 0_{X} N_{O_{x}}=(0.84 \mathrm{~m})(2.182) \\
& Z_{T}=1.81 \mathrm{~m}
\end{aligned}
$$

