CE407 SEPARATIONS

Lecture 27

Instructor: David Courtemanche

Includes material from the Linde Group

CRYOGENIC DISTILLATION

There are many process that require large amounts of relatively pure oxygen or nitrogen

- Steel making
 - Basic Oxygen Steelmaking
 - Uses almost two tons of O₂ per ton of steel produced
- Ammonia
 - N₂ used in the Haber Process to make ammonia
- Coal Gasification
 - Coal, O₂, and water used to make Syngas
 - Syngas is mixture of CO, CH₄, H₂, CO₂, and H₂O
- Inert Gas
 - N2 used to blanket tanks containing flammable liquids

- So how do we get large quantities of the constituents of air?
- Air can be cooled until it is liquified
- The liquid air can then be distilled into pure components
- No surprise there are a lot of details to be covered in order to make this work!
- Composition of dry atmospheric air:

- First developed by Carl von Linde in 1895
- Industrial applications began in 1902
- Can produce high purity gases
- Very energy intensive!

- Air at or below a pressure of 1 bar must be cooled to -192 °C (81.5 K) before condensation begins
- Air at or below a pressure of 6 bar must be cooled to -172 °C (101 K) before condensation begins
- This is quite cold...

Joule-Thomson Effect

- At ordinary temperatures and pressures all real gases except hydrogen and helium cool upon expansion
- The cooling occurs because work must be done to overcome the longrange attraction between gas molecules at they move further apart
 - H₂ and He have unusually weak long-range forces
- A refrigeration cycle utilizes this phenomena to reduce the temperature of the gas

T_{xy} diagram for Oxygen / Nitrogen Mixture

Typical Process Steps

- 1. Removal of Dust Particles
 - Mechanical Filter removes dust at the inlet to the compressor
- 2. Air Compression
 - Multi-stage turbo compressor raise air pressure to approximately 6 bar
- 3. Air Cooling and Purification
 - Air is cooled by direct contact with cooling water which also removes soluble air impurities
- 4. Adsorption
 - Water, Carbon dioxide, and other hydrocarbons are removed via adsorption in periodically loaded/regenerated molecular sieve adsorbers
 - Without this step these materials would freeze at the cryogenic temperatures and blind over the column

Typical Process Steps, continued

5. Low-Temperature Heat Exchange

 Process air is cooled nearly to liquefaction temperatures by means of countercurrent heat exchange with nitrogen waste gas from the rectification process

6. Cold Production and Internal Product Compression

 Air is further compressed and then passed through an expansion turbine whereby it is cooled to liquid temperatures

7. Cryogenic Rectification of Air

- Low pressure column produces Pure Oxygen (bottoms) and nitrogen waste gas (distillate)
- High pressure column produces pure nitrogen gas (distillate)and oxygen enriched liquid (bottoms)

8. Cryogenic Rectification of Argon

 Sidestream of argon enriched gas from low pressure column goes to series of two columns to produce pure argon

PARTIAL CONDENSORS REVISITED

Partial Condensers McSH pp 674-675

- A total condenser converts the total vapor flow to liquid flow
 - Therefore the entering vapor and exiting liquid have the same composition

$$X_D = X_0 = Y_1$$

- A partial condenser only converts a portion of the vapor flow to liquid
 - The composition of the vapor and liquid exiting are in equilibrium with one another and differ from the composition of the entering vapor.

$$y' = y^*(x_0) = x_D \neq y_1 \neq x_0$$

 $x_0 = x^*(y')$

 A secondary condenser then converts the rest of the vapor to a liquid

Partial Condensers and McCabe-Thiele

- Because of the equilibrium relationship between the vapor and liquid exiting the partial condenser there is separation being accomplished
- The first step on the McCabe-Thiele is the partial condenser
 - This step does NOT count as a stage
 - Stages are actual trays in the column

 Make sure you know whether the condenser is a Total Condenser or a Partial Condenser

Partial Condensers and McCabe-Thiele

- Note that the same y' is equal to x_D no matter what Reflux ratio is used
- Note that the required x_0 is NOT dependent on the Reflux Ratio
 - It is the liquid mole fraction in equilibrium with vapor x_D
- Note that the required y₁ is dependent on the Reflux Ratio

Benzene and Toluene at Atmospheric Pressure

Benzene and Toluene at Atmospheric Pressure

Continuous Distillation - Enthalpy Balances with Total Condenser

McSH pp 694-701, pp 679, 682 eq 21.1 and 21.2

How much energy does one need to remove via condenser?

Total Condenser

 Control Volume around condenser

Heat added = Enthalpy out – enthalpy in

$$-q_c = DH_D + L_0 H_{x,0} - V_1 H_{y,1}$$
$$= (D + L_0)H_{x,0} - V_1 H_{y,1}$$

• Note: $\mathbf{q_c}$ is defined as the amount of heat **REMOVED** via the condenser and is a positive number. The enthalpy balance is the amount of heat added, therefore the \mathbf{q} term appears as $-\mathbf{q_c}$ in the equation. The fact that $-\mathbf{q_c}$ is therefore a negative term is consistent with the fact that we are removing heat to affect a phase change from vapor to liquid

Enthalpy Balances: Total Condenser, continued

- $-q_c = (D + L_0)H_{x,0} V_1H_{y,1}$
- But from mass balance we know that $V_1 = D + L_0$
- $-q_c = (D + L_0)H_{x,0} (D + L_0)H_{y,1}$
- And from definition of reflux ratio $L_0 = D R$

$$-q_c = D(1+R)(H_{x,0}-H_{y,1})$$

- It's not as simple as just looking at Heats of Vaporization
- You have the temperature changing from Dew Point to Bubble Point
- Heats of Vaporization are defined for a pure material at a given temperature (usually the normal boiling temperature for pure material) and we are condensing over a range of temperatures

Continuous Distillation - Enthalpy Balances with Partial Condenser

Heat added = Enthalpy out – enthalpy in

$$-q_c = DH_D + L_0H_{x0} - V_1H_{y1}$$
$$-q_c = DH_y(x_D) + L_0H_x(x_0) - V_1H_y(y_1)$$

- From definition of reflux ratio $L_0 = D * R$
- From mass balance we know that $V_1 = D + L_0 = (1 + R)D$

•
$$-q_c = DH_y(x_D) + (DR)H_x(x_0) - (1+R)DH_y(y_1)$$

- Note that $H_{\gamma}(x_D)$ is a saturated VAPOR Phase Enthalpy at x_D
- $H_x(x_0)$ is a saturated LIQUID Phase enthalpy at x_0
- x_0 is the liquid mole fraction in equilibrium with vapor having a mole fraction equal to x_D
- They are NOT at the same temperature
- y_1 is the mole fraction of the vapor exiting stage 1
- y_1 is dependent on the reflux ratio, which sets the operating line!

Partial Condensers Revisited

- Final Condenser Enthalpy Balance
 - Heat added = Enthalpy out enthalpy in $-q_{fc} = DH_D DH_{y'}$ $-q_{fc} = DH_x(x_D) DH_y(x_D)$
 - $-q_{fc} = D[H_x(x_D) H_y(x_D)]$

Partial Condensors Revisited

- Both condensers together
- Looks somewhat similar to the Total Condenser case...
 - Heat added = Enthalpy out enthalpy in

$$-q_c = DH_D + L_0 H_{x,0} - V_1 H_{y,1}$$

- But, of course, $x_D \neq x_0 \neq y_1$
- $-q_c = DH_x(x_D) + L_0H_x(x_0) V_1H_y(y_1)$
- $-q_c = DH_x(x_D) + RDH_x(x_0) (R+1)DH_y(y_1)$
- Note difference from Partial Condenser Enthalpy Balance is that the exiting distillate stream is now liquid phase whereas when evaluating the partial condenser by itself it was vapor phase

