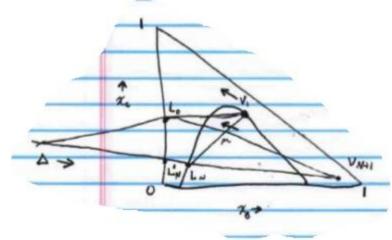
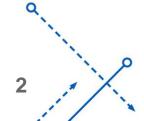

CE407 SEPARATIONS

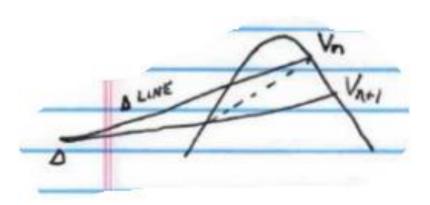
Lecture 17

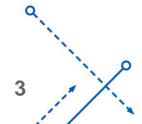
Instructor: David Courtemanche

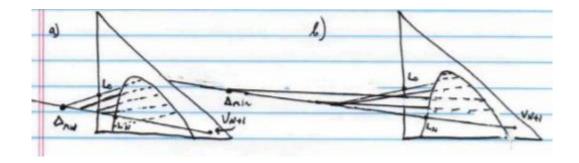


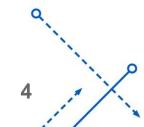


Multi-Stage Countercurrent Extraction Treybal pp. 452 Fig 1040

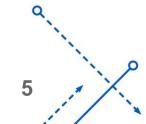

- So far we have started with a given solvent flow, now we will see how to determine a reasonable flow
- Point #1
- Revisit the diagram for locating mixing point, M
- As the amount of solvent DECREASES
 - "M" moves toward L₀
 - V₁ moves to the left
 - Δ will move to the right
 - The line $\overline{V_1L_0}$ becomes steeper

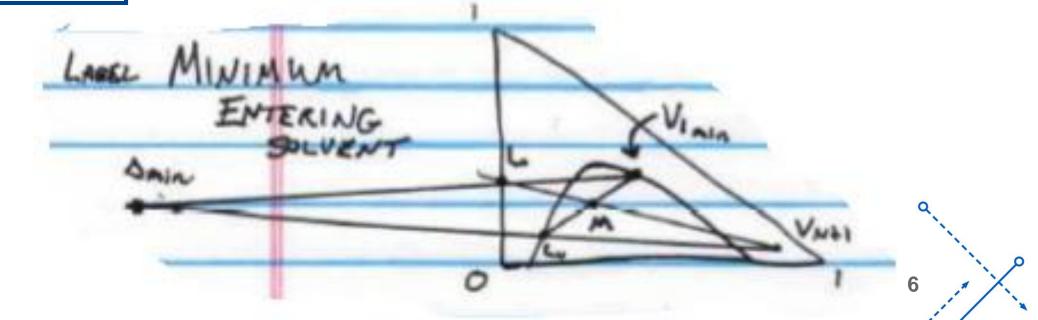



- Point #2: Review Hunter-Nash method
- The # of steps are determined by alternating between:
 - Using ∆ lines to do mass balances
 - Using tie lines to establish EQ relationships
- When the slopes of the Δ lines and tie lines are very different we make a lot of progress with each step
 - Similar to when OP lines and EQ curve are far apart
- When the slope of a ∆ line is the same as the slope of a tie line we stop making progress
 - This is a pinch point
- The infinite number of steps corresponds to minimum solvent flow

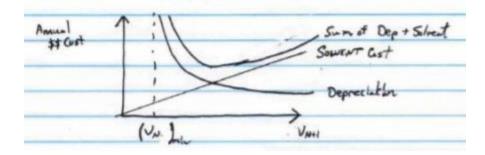


- If we extend all of the relevant tie lines we see which leads to the furthest Δ location
 - Relevant tie lines are the those located between the tie line that passes through L_0 and the one that passes through L_N
- The Δ location furthest left corresponds to the largest flow that leads to a pinch point this is the Minimum Solvent Flow
 - Note that all smaller flows will have a pinch point, we are looking for one where you reach the
 point where there are no more pinch points
 - When Δ lies to left of triangle it is furthest out, when Δ lies to right of triangle it is closest
- If the ties lines all have similar slopes this will be the tie line that crosses at L_0 (Fig a)
- If the slopes vary, it could be a different tie line (Fig b)

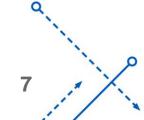




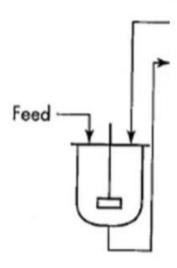
- Label Leftmost intersection as Δ_{min}
- Notice the tie lines that are out of range are not used



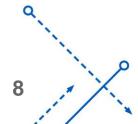
- Now draw a line from Δ_{min} to L_0 and extend it to right hand side of phase boundary
- This determines V_{1,min}
- Note that this line is NOT necessarily a tie line
- Draw in $\overline{L_N V_{1,min}}$ and $\overline{L_0 V_{N+1}}$, their intersection determines **M**
- $\frac{(V_{N+1})_{min}}{L_0} = \frac{x_0 x_M}{x_M y_{N+1}}$ this gives the ratio of minimum solvent flow to feed flow


What Flow Should we Use?

- Same optimization as we did for other Unit Operations...
- Annual Cost = Depreciation + Solvent Cost

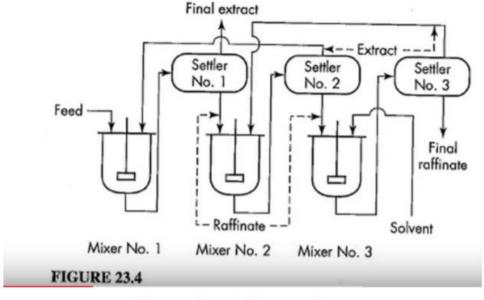

Once again it turns out that it typically reaches a minimum at

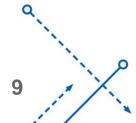
$$(V_{N+1})_{opt} = 1.3(V_{N+1})_{min}$$

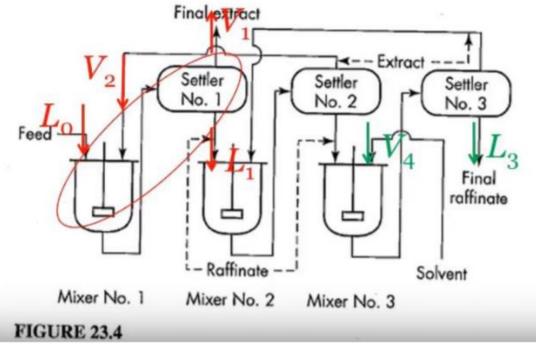


Batch Operation of a Stage

Think in terms of "before" and "after" the mixing and settling

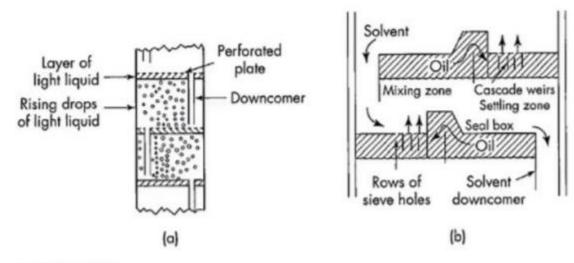

- Charge Feed and Solvent to Vessel
- Mix thoroughly need proper hold time
- Stop agitation and let phase settle
- Aqueous phase is more dense and will be on bottom
- · Drain material from bottom of vessel
 - o First material is aqueous phase
 - Switch to another receiver when organic phase starts to come out


Continuous Operation


Mixer-settlers

Think in terms of "flow in" and "flow out" each mixing and settling stage

- Continuous flow of Feed and Solvent to Mixing Vessel
- Mix thoroughly need proper residence time
- Mixture is continuously flowing to settler
- The two phases separate in settler and exit as two streams



- Ellipse represents Stage 1
- L₀ is Feed into Stage 1
- V₂ is extract from Stage 2 feeding into Stage 1
- L₁ is raffinate flow leaving Stage 1
- V₁ is extract flow leaving Stage 1
- V₄ is solvent flow entering Stage 3, ie V_{N+1}
- L₃ is final raffinate flow exiting Stage 3, ie L_N

Packed and plate towers

FIGURE 23.5

Perforated-plate extraction towers: (a) perforations in horizontal plates; (b) cascade weir tray with mixing and settling zones. (After Bushell and Fiocco.⁴)

Very similar to the trays we have discussed in a Distillation Column

- Density difference is orders of magnitude lower than in a rectifying gas/liquid column (sp gr of 1 for aqueous and around 0.7 for organic)
- Both phases will be relatively high viscosity as opposed to the low viscosity vapor phase in distillation (velocities will be lower than in distillation column)
- Aqueous phase is more dense and will travel downward, organic phase will travel upward
- This means to location of the extract leaving the column depends on whether the extract is the aqueous phase or whether it is the organic phase