CE407 SEPARATIONS

Lecture 16

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Multi-Stage Countercurrent LLE McSH pp783-786, Treybal pp 451-452

- In the last lecture we saw how to determine the composition and flowrates of the exiting flows from a multi-stage countercurrent process
- In order to determine the required number of stages for an extraction train we need to generate an Operating Line (which is, of course, a mass balance...)
 - It is very much a curve for an LLE extraction train
- With the operating line we can then do a McCabe-Thiele analysis

Multi-stage Countercurrent LLE Operating Line

- The function of the operating line is to be able to pick a value of **x** at any point in the process and predict what the value of **y** is at that same location
- Use mass balance
 - Control volume will be from the right of stage 1 up to and including an arbitrary stage **n**
 - We know the compositions y_1 and x_0 , so if we select a value of x we can determine corresponding value of y

LLE Mass Balance

 $L_{0} + V_{N+1} = L_{N} + V_{1} = M \qquad \longrightarrow \qquad L_{0} - V_{1} = L_{N} - V_{N+1} = \Delta$ $L_{0}x_{0} + V_{N+1}y_{N+1} = L_{N}x_{N} + V_{1}y_{1} = Mx_{M} \qquad \longrightarrow \qquad L_{0}x_{0} - V_{1}y_{1} = L_{N}x_{N} - V_{N+1}y_{N+1} = \Delta x_{\Delta}$

- Δ is an abstract concept representing the net flow to the left at any plane in the diagram
 - L_0 kg/min is the flow rate to the left of raffinate
 - V_1 kg/min is the flow rate to the right of extract
 - Their difference, $L_0 V_1 = \Delta$, is the overall net flow to the left crossing the plane on the right hand side of stage 1
- Similarly Δx_{Δ} is the net flow of solute crossing that plane

LLE Mass Balance

- Δ and Δx_{Δ} were also defined in terms of the plane to the left of stage **N**
 - The terms Δ and Δx_{Δ} must have equal values at both planes and, indeed, at ANY plane in the system. This needs to be true due to the conservation of total mass and conservation of mass of solute
- Think of it like a pipe:
 - If the flow is a given rate and direction at any point in the pipe, it MUST be that same rate and direction at any point throughout the pipe
 - Yes, the raffinate flow and the extract flow are varying from stage to stage, but the difference between them is constant

5

Determining $\boldsymbol{\Delta}$, the mixture point

- Review: First Diagram
 - Determine the actual raffinate composition L_N by drawing line from L'_N (solvent free raffinate composition) to pure solvent corner
 - Intersection with phase boundary on diluent rich side is L_N
- 2nd Diagram
 - Plot L_N , L_0 , V_{N+1} (V_{N+1} may not be pure solvent)
 - Draw line from L_0 to V_{N+1} , locate M
 - Extend a line from L_N through M up to solvent rich side of phase boundary
 - Intersection of that line with the phase boundary locates V_1
 - Mass balance gives **R** and **E**
- Now forget about L'_N , M, and all the intersecting lines, etc
- We just want to keep L_N , L_0 , V_{N+1} , and V_1

Back to the Mass Balance Equations

 $L_0 - V_1 = L_N - V_{N+1} = \Delta$

$$L_0 x_0 - V_1 y_1 = L_N x_N - V_{N+1} y_{N+1} = \Delta x_\Delta$$

- Also $L_N = V_{N+1} + \Delta$
- And $L_N x_N = V_{N+1} y_{N+1} + \Delta x_\Delta$
- That has a form indicating that L_0 is a mixture of V_1 and Δ and also that L_N is a mixture of V_{N+1} and Δ
- We know that a mixture lies on a line between the two original compositions
- If we draw and extend the lines $\overline{L_0V_1}$ and $\overline{L_NV_{N+1}}$ their intersection is the one point that satisfies both mass balances
- That intersection is Δ

 $L_0 = V_1 + \Delta$

 $L_0 x_0 = V_1 y_1 + \Delta x_\Delta$

$\boldsymbol{\Delta}$, the mixture point

- Notice that Δ is not even on the triangle. It has impossible mass fractions.
 It is only a mathematical construct with no physical significance at all!
- Depending upon the locations of L_N , L_0 , V_{N+1} , and V_1 , Δ can lie to the left or right of the phase diagram triangle

Using $\boldsymbol{\Delta}$, the mixture point

• Now we will set the control volume to include stage 1 up to and including stage **n**, an arbitrary stage

 $L_{0} + V_{n+1} = L_{n} + V_{1} = M \qquad \longrightarrow \qquad L_{0} - V_{1} = L_{n} - V_{n+1} = \Delta$ $L_{0} x_{0} + V_{n+1} y_{n+1} = L_{n} x_{n} + V_{1} y_{1} = M x_{M} \qquad \longrightarrow \qquad L_{0} x_{0} - V_{1} y_{1} = L_{n} x_{n} - V_{n+1} y_{n+1} = \Delta x_{\Delta}$

- Δ is the same number as we calculated graphically using stages 1 to N
- Remember it is the net flow to the left and has to be constant

9

Using $\boldsymbol{\Delta}$, the mixture point

• The mass balance can be rearranged to be

 $L_n = V_{n+1} + \Delta$ and $L_n x_n = V_{n+1} y_{n+1} + \Delta x_\Delta$

- Which, once again, looks like a mixture of Δ and V_{n+1}
- Note that with the exception of L_0 and V_{N+1} , the flows coming out of each stage are in equilibrium with each other. That means that they must reside on the phase boundary curve
- If we draw arbitrary lines radiating from Δ then they will intersect the left and right hand boundaries of the phase diagram in pairs corresponding to pairs of (x_n, y_{n+1})

Using $\boldsymbol{\Delta}$, the mixture point

• We can draw as many of these lines as we want and generate a table of points on the Operating Line $x_n = v_n$

• Now we can plot the operating line

Equilibrium Curve McSH pp 784 (figure 23.10), Treybal pp 453 (Figure 10.23)

• Equilibrium Data can be presented three ways

		RAFFINATE	EXTRACT	
1		A RICH	BRICH	(y T
Xe		XIX.	[4] [4]	n
	A		~ ~ ~	1
	EN	(
	0	1	- ~	
	XA	(

Ternary Tabular x-y Graphical

- Pairs of points in the table can be used to plot tie lines on ternary diagram
- Tie line end points can be used to generate table
- $\mathbf{x_c}$ and $\mathbf{y_c}$ from table or from tie lines can be used to generate x-y graphical

Counting Stages - Hunter-Nash Ternary Method

- From methods we looked at earlier, we know Δ , L_0 and V_1
- L_1 and V_1 are in equilibrium and therefore must be on a tie line drawn in red, so we can determine L_1
- L_1 and V_2 are on the Operating Line together, so if we extend line from Δ through L_1 we will locate V_2
- V₂ is on a tie line with L₂, and L₂ is on the Operating Line with V₃, etc, etc
- Continue until you reach an L value that is at or below L_N
- The subscript you end on (say L_5) is the number of stages required.
- There will be interpolation of ties lines which introduces error and uncertainty
- Caution: If you look up Hunter-Nash in literature it often uses a ternary diagram defined as:

Counting Stages - McCabe-Thiele Method

- This is pretty much the same as we have done for other Unit Operations
- It is inherently more accurate than Hunter-Nash method
- Notice that points $(\mathbf{x_0}, \mathbf{y_1})$ and $(\mathbf{x_N}, \mathbf{y_{N+1}})$ are NOT on the Operating Line!
- Entering liquids L_0 and V_{N+1} are not in equilibrium with anything and therefore are not on the phase boundary and therefore not part of the Operating Line

- DO NOT EVER Draw them as being on the OP Line!!!
- See Video of LLE Countercurrent Example 3b on course website notes

