CE407 SEPARATIONS

Lecture 15

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Multi-Stage Cross Current LLE Treybal pp 446-448

- Counter Current is more efficient but cross current is often used in lab work or small scale processes
- Streams exiting a given stage are in equilibrium with each other

Multi-Stage Cross Current LLE

- The raffinate from the first stage is treated with a second batch of solvent
- A new mixture M_2 is created which then separates into R_2 and E_2
- Note that each successive extraction leads to a lower solute content in the extract

Multi-Stage Countercurrent LLE McSH pp 784-786 Treybal pp 450-451

- Raffinate and extract leaving a given stage are in equilibrium with one another
- Overall Mass Balance control volume around entire process
- L is Raffinate and V is Extract -both are liquid
 - X refers to raffinate mass fraction, y to extract mass fraction
 - Letter subscript indicates component, Number refers to the stage that flow comes FROM
 - If there is no letter subscript the mass fraction is a solute mass fraction
- Feed stream L_0 has known flow rate and composition
- Entering Solvent Stream, V_{N+1}
 - Composition will be known
 - Often a pure solvent $(y_B)_{N+1} = 1$. Sometimes solvent is recycled, then $(y_B)_{N+1} \neq 1$, but close
 - For NOW we will look at cases where we do know the flow rate

Multi-Stage Countercurrent LLE

- Exiting Raffinate, L_N , is usually specified with at requirement reaches some low number
- The raffinate will usually have some solvent, **B**, in it. **A** and **B** are typically not totally immiscible
- Often the mass fraction of solute in the raffinate is given on a "Solvent Free" basis
 - This is a hypothetical raffinate L_N ' which has had all solvent removed
 - It is therefore a binary mixture of solute, **C**, and diluent, **A**
- The reason for this is that when it is determined that one needs to design an extraction for cleaning up L₀ you don't necessarily know what solvent will be used and therefore cannot predict how miscible the solvent is likely to be with the diluent
 - But you can set up a specification for how much solute relative to the diluent you are willing to accept in your raffinate

Multi-Stage Countercurrent LLE

- If we have L_N ', how do we determine the composition of the actual raffinate, L_N ?
- The actual raffinate is a mixture of the hypothetical raffinate, L_N ', and pure solvent
- It will therefore lie on the line connecting L_N ' to the pure solvent corner of the diagram
 - Use pure solvent in this step even if the process does not use pure solvent, the hypothetical L_N ' needs to have only **B** added to it to obtain the actual L_N
- As it is in equilibrium with the extract that is leaving stage **N**, it must be on the phase boundary

Multi-Stage Countercurrent LLE

- After locating the actual L_N composition, create a new phase diagram (to avoid clutter)
 - This graph shows a case with recycled solvent
- Total mass balance

$$L_0+V_{N+1}=L_N+V_1=M$$

Solute mass balance

$$L_0 x_0 + V_{N+1} y_{N+1} = L_N x_N + V_1 y_1 = M x_M$$

- **M** is the rate at which mass enters (and exits) the process
- $M x_M$ is the rate at which solute enters (and exits) the process

Let's talk about M...

$$L_0 + V_{N+1} = L_N + V_1 = M$$
$$L_0 x_0 + V_{N+1} y_{N+1} = L_N x_N + V_1 y_1 = M x_M$$

- M sure looks like a mixture of L_0 and V_{N+1}
- Except that L_0 and V_{N+1} are NEVER in contact, so this mixture does not actually exist
- M has the physical significance of being the sum of the two streams entering the system (also the sum of the two exiting)
- x_M is a hypothetical value that satisfies the solute mass balance
- That said, M (located by its composition x_M) WILL lie on the line between L_0 and V_{N+1}
- M (located by its composition x_M) WILL also lie on the line between L_N and V_1

Multi-stage Countercurrent LLE

- We know L_0 , x_0 , y_{N+1} , and V_{N+1} so we can calculate M and x_M
- We can locate point *M* on the phase diagram
- We know that L_N , M, and V_1 are all on a straight line...
 - So we can locate V_1 , it will be where that line intersects the phase boundary
- We now have the composition of all four streams which exit or enter the system
- Flow rates can be determined by a solute mass balance

$$L_N x_N + V_1 y_1 = M x_M = (L_N + V_1) x_M$$

• Remember $L_N + V_1 = M$

$$V_1(y_1 - x_M) = L_N(x_M - x_N)$$

Multi-stage Countercurrent LLE

$$V_1(y_1 - x_M) = L_N(x_M - x_N)$$

$$\frac{V_1}{L_N} = \frac{x_M - x_N}{y_1 - x_M}$$

• Note that

$$L_N + V_1 = L_N (1 + \frac{V_1}{L_N}) = M = L_0 + V_{N+1}$$

$$L_N = \frac{M}{1 + V_1/L_N}$$
 and $V_1 = M - L_N$

0

Multi-stage Countercurrent LLE

- Notice that we did this procedure and NEVER used tie lines
 - We were looking at overall mass balances and never looked at individual stages
 - Tie lines indicate the equilibrium balance between steams exiting a given stage
 - The L_N and V_1 streams ARE in equilibrium with V_N and L_1 streams, respectively and that is why they are located on the phase boundary.
 - L_N and V_1 are NOT in equilibrium with each other and are therefore NOT connected to one another by a tie line
- It is best to use a phase diagram WITHOUT tie lines for this analysis
 - Removes the temptation to try to use tie lines

