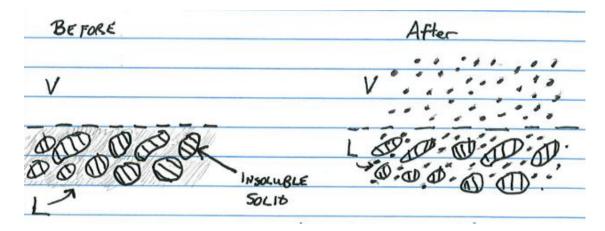
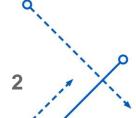

CE407 SEPARATIONS

Lecture 13

Instructor: David Courtemanche

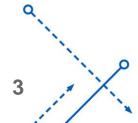


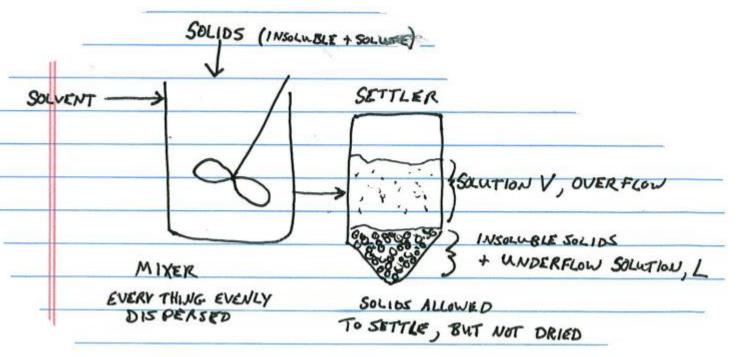


Leaching McSH 764-772

Using a liquid solvent to dissolve soluble matter from its mixture with an insoluble solid

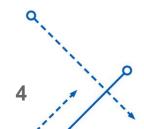
- L and V are both liquid phases no vapor!
 - L may be a solid *before* contact with solvent
- V phase: Liquid solution that flows out a solid free solution "Overflow"
- L phase: Liquid solution that is wetting the surface and/or pores of insoluble solid "Underflow"
 - The insoluble solid is NOT part of L
- L and V are composed of Solvent and Solute




- Solute: the material we are trying to remove from the insoluble solid
- Solvent: them material we are using to dissolve the solute

Making Tea

- We start with tea leaves:
 - They are composed of insoluble plant fiber (the insoluble solid) and Soluble material that goes into the tea (solute)
- We dip the tea bag into hot water (solvent)
- When we remove the tea bag:
 - Tea in the mug is a solution, V, Overflow
 - The tea leaves are wet and have tea solution clinging to them
 - This liquid is the Underflow, L
 - The insoluble plant fiber remains in the tea bag and their mass is unchanged – Insoluble Solid



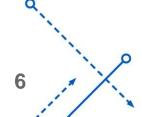
- Solid and Solvent are introduced into mixer
- L phase may 100% solid before introduction of solvent
- During mixing the solid is suspended in the solution and evenly dispersed throughout the vessel
- Suspension is transferred to settling vessel and solids settle out
- Equilibrium Condition
 - Assumes good mixing of vessel contents
 - All one phase (no immiscibility)

- y is concentration in V phase
- x is concentration in L phase

$$y = x$$

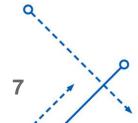
Units used in Leaching

- In leaching you don't have nice "Clean" chemicals
 - You may have
 - Ore
 - Fish Guts
 - Other odds and ends
- Defining a molecular weight can be a challenge for both the insoluble solids and the solute
 - Solute may be an oil with a distribution of various components
- Therefore Leaching is typically worked out in MASS units (not molar)
- Can define concentration in two different ways:
- In terms of Solution Flow
 - L and V: Mass flow of SOLUTION
 - x and y: mass fraction of solute


- In terms of Solvent Flow
 - L and V: Mass flow of SOLVENT
 - x and y: mass ratio of solute to solvent

• $\frac{mass\ of\ solute}{mass\ of\ solution}$

mass of solute mass of solvent


Units used in Leaching

- In Absorption/Stripping/Distillation we work in molar flow because that is what is applicable to Equilibrium calculations
- In leaching the equilibrium relationship is x = y
- We won't be doing equilibrium calculations (and defining MW is a challenge...)
- Mass of solute = L * x or V * y
 - This is true no matter which convention you choose, but you **absolutely** have to use the same convention throughout the calculation!

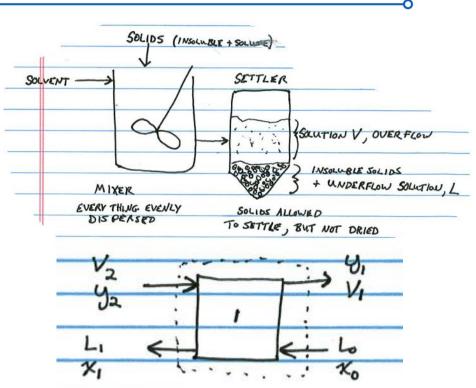
- The insoluble material passes through the equipment unchanged
 - Mass flow of insoluble will be constant throughout the problem
- How much liquid clings to the surface and pores of the solid passing through? (This is the underflow, L)
- This would be extremely difficult to predict theoretically
 - It is dependent upon:
 - Surface tension
 - Viscosity
 - Density
 - Surface roughness / pore size of insoluble solid
 - Etc.
- Data is typically determined experimentally

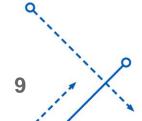
Underflow

- Experimental data may be expressed as:
- mass of solution/mass of insoluble solid

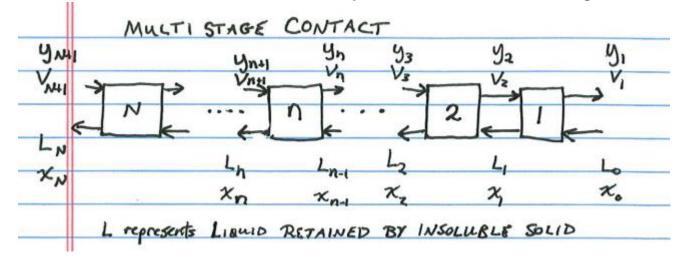
or as

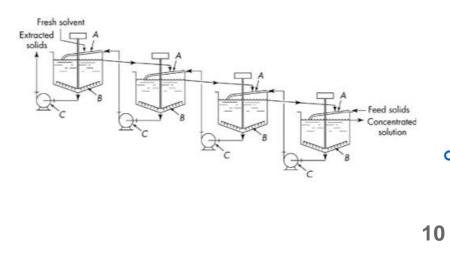
- mass of solvent/mass of insoluble solid
- Example:


$x = y = \frac{kg \ oil}{kg \ solution}$	kg solution retained / kg insoluble solid
0.0	0.0500
0.1	0.0505
0.2	0.0515


- The concentration of the solution affects the viscosity, surface tension, etc and therefore different amounts of solution will cling to the solid
- This data will be very specific to the type of insoluble solid, temperature, etc

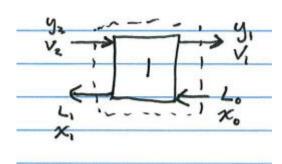
- The equipment shown here
- can be represented like this
- Note: the streams and concentrations are represented with subscripts that indicate what stage they have come FROM
 - This is the same as we are used to from distillation
- Review example 2 from "Leaching More Examples"



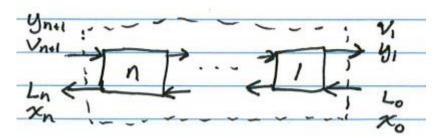


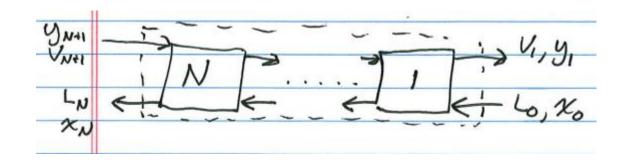
Leaching: Multi-Stage Contact

- In order to maximize the amount of solute recovered we use multiple stages
- In this diagram the left hand side is the "clean" side and the RHS is the "dirty" side
- Incoming Solvent stream may be fresh, with $y_{N+1} = 0$ or it may be recycled
- V₁ often referred to as "Strong Solution"
- Advantage of countercurrent:
 - On LHS where x_N is relatively small, y_{N+1} is also at its lowest, providing driving force
 - On RHS where y_1 is at its greatest, x_0 is at its largest, so there is still driving force



Control Volumes


- There are three control volumes that will prove to be of particular use
- Control volume around stage 1
- Often times raw material coming in has no solvent at all
- If L is pure solute, $\mathbf{x_0} = 1$
- L will pick up a very large amount of solvent in this stage
- L₀ and L₁ will be very different



Control Volumes

 Control Volume from beginning of battery up to and including generic stage n

Control Volume around entire battery

How Many Stages Do We Need?

- We can analyze in a similar manner to absorption or distillation
 - Generate an operating line
 - Generate EQ curve
 - Step off stages
- The equilibrium curve is simply $\mathbf{x}_n = \mathbf{y}_n$
- However, operating line is very curved and we will need to generate it

Operating Line

- First gather your starting information
 - Feed composition
 - Mass of inert
 - Mass of solute
 - Mass of solvent
 - Fresh Solvent
 - V_{N+1} is usually unknown
 - y_{N+1} will be given
 - Strong Solution (V₁ stream)
 - % recovery of solute
 - Relationship between $\mathbf{x_n}$ and amount of solution retained

4	University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences
	School of Engineering and Applied Sciences

$x = y = \frac{kg \ oil}{kg \ solution}$	kg solution retained / kg insoluble solid
0.0	0.0500
0.1	0.0505
0.2	0.0515

Operating Line – Steps

- 1. Propagate the information given
 - i.e if it is stated that a 90% recovery of the 0.5 ton of solute
 - 0.45 tons are in the V₁ stream and 0.05 tons are in L_N stream
 - If given a mass fraction in strong solution then you can calculate the solvent flow and get V₁
- 2. In general the lack of constant flows prevents one from jumping into the mass balances
 - You need to sort out L_N by trial and error
 - Guess a value for x_N
 - From step 1 we know how much solute there is
 - $x_N = \frac{mass\ solute_N}{mass\ solution_N}$
 - Suppose 100 kg of inert and mass balance indicated 1 kg of solute exits stage N
 - Guess $\mathbf{x_N} = 0.1$ Then $\mathbf{L_N} = 0.0505 \times 100 \text{ kg solid} = 5.05 \text{ kg solution}$ (Value of 0.0505 is read off of table)
 - Now $x_N = \frac{1 \, kg \, solute}{5.05 \, kg \, solution} = 0.198 \neq 0.1$ The guess of $\mathbf{x_N} = 0.1$ is wrong because it doesn't add up
 - Guess $\mathbf{x_N} = 0.19$ Then $\mathbf{L_N} = 0.0514 \times 100 \text{ kg} = 5.14 \text{ kg solution}$ (Value of 0.0514 is interpolated from table)
 - Now $x_N = \frac{1 \, kg \, solute}{5.14 \, kg \, solution} = 0.195$ The guess of $\mathbf{x_N} = 0.195$ not too bad
 - The x_N leads to a value for amount of solution. The known amount of solute and that calculated amount of solution of must lead to a concentration that matches the guess...

Operating Line – Steps

3. Perform Solute and Solution Balance across the entire battery

$$In = Out$$

Solution

$$V_{N+1} + L_0 = V_1 + L_N$$

Solute

$$y_{N+1}V_{N+1} + x_0L_0 = y_1V_1 + x_NL_N$$

- We know y_1 , y_{N+1} , and x_0L_0 from problem statement
- We calculated V_1 earlier
- We just solved x_N and L_N with the iteration
- That just leaves us able to solve for V_{N+1}
- 4. Do Solute and Solution balance around stage 1

$$In = Out$$

Solution

$$V_2 + L_0 = V_1 + L_1$$

Solute

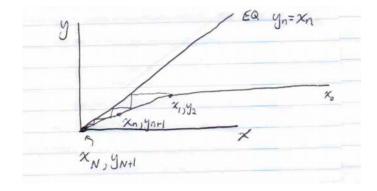
$$y_2V_2 + x_0L_0 = y_1V_1 + x_1L_1$$

• Because we know that $y_1 = x_1$ we can obtain y_2 we now have point (x_1, y_2) for our operating line

Operating Line – Steps

- 5. Because Operating Line is curved we need at least one intermediate point
 - Choose stage n such that x_n is between x₁ and x_N
 - Make x_n a value that is on the chart. Do balances from start of battery through stage n

$$In = Out$$


Solution

$$V_{n+1} + L_0 = V_1 + L_n$$

Solute

$$y_{n+1} V_{n+1} + x_0 L_0 = y_1 V_1 + x_n L_n$$

- Because we know \mathbf{x}_n we can calculate L_n from retention chart value and mass of inert
- We can now obtain y_{n+1} and therefore (x_n, y_{n+1})
- 6. Now that we have three points on OP Line we can do McCabe-Thiele

