1. (40 pts) $500 \mathrm{~kg} / \mathrm{hr}$ of a feed solution containing a solute (C) mass fraction of 0.25 is to be extracted using $125 \mathrm{~kg} / \mathrm{hr}$ of a recycled solvent stream (solute C mass fraction $=0.04$, solvent mass fraction $B=0.95$. The exiting raffinate shall be 0.10 mass fraction solute on a solvent free basis. Use the following equilibria data and phase diagrams on next pages to determine how many extraction stages are required. Use the McCabe-Thiele method to determine the required number of stages.

Diluent Rich (Raffinate)		Solvent Rich (Extract)	
$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$	$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$
0.07	0.22	0.30	0.42
0.06	0.17	0.40	0.39
0.045	0.12	0.52	0.30
0.04	0.06	0.64	0.18
0.038	0.04	0.685	0.12
0.035	0.02	0.73	0.06

2. (40 pts) Benzene will be stripped from a valuable oil by countercurrent contact with air in a tower packed with $2.0^{\prime \prime}$ ceramic Raschig rings. The contaminated oil (composition 98 mole $\%$ oil and 2 mole \% benzene) will enter the tower at $2500 \mathrm{~mol} / \mathrm{hr}$ and 95% of the entering benzene is to be removed. The flow rate of the incoming air will be $37,500 \mathrm{~mol} / \mathrm{hr}$. The density and viscosity of the dilute oil/benzene solution are well approximated by the properties of pure oil. The vapor phase behaves ideally. The tower will operate isothermally at 25 C and at a total pressure of 1 atm . The tower diameter shall be determined to give $\Delta \mathrm{P} / \mathrm{ft}$ of packing equal to 50% that of $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}$. The equilibrium curve at these conditions is $\mathbf{y = 0 . 1 2 5} \mathbf{x}$. You may regard the operating line as being straight. Calculation of the flooding velocity should be based on flow rates at the top of the tower, where they are largest. The density of the vapor at the top of the column can be approximated as that of air.

Data:
Air:
$M W=28.9$

Benzene:

$$
M W=78.11
$$

$\mathrm{Sc}=1.76$ in air
$\mathrm{Sc}=3500$ in oil
Oil:

$$
\begin{aligned}
& \mathrm{MW}=106 \\
& \rho=0.83 \mathrm{~g} / \mathrm{cm}^{3} \\
& \nu=2.84 \mathrm{cSt} \\
& \mu=2.36 \mathrm{cP}
\end{aligned}
$$

Packing:
Table included in attachments
Gas Constant $=0.73024 \mathrm{ft}^{3} \mathrm{~atm} /(\mathrm{R} \mathrm{Ibmol}) \quad \mathrm{R}$ is degrees Rankine
Gas Constant $=82.05745 \mathrm{~cm}^{3} \mathrm{~atm} /(\mathrm{K} \mathrm{mol})$
a. What is the required diameter for the tower? Use the following graph and the correlation $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}=0.115 \mathrm{~F}_{\mathrm{p}}{ }^{0.7}$ inches water column per foot of packing
b. What height of packing is required? Base your solution on $y-y^{*}$. Use the correlations from lecture to determine H_{x} and H_{y}.

$$
H_{O y}=H_{y}+m \frac{V}{L} H_{x}
$$

3. ($\mathbf{2 0} \mathbf{~ p t s}$) n-Heptane undergoes mass transfer from a bulk gas (air +n -heptane) phase, where its mole fraction $y=0.03$, to a bulk liquid (mineral oil +n -heptane) phase, where its mole fraction $x=0.005$, through a gas-liquid interface. Temperature and pressure are 35 C and 1.0 atmosphere. The vapor pressure of n-Heptane at this temperature is 74.02 mm Hg . Mass transfer coefficients are as follows:

$$
\begin{aligned}
& k_{y}=7.0 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} \\
& k_{x}=3.5 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

Assuming validity of Raoult's Law for the equilibrium relation,
a. What are the overall mass transfer coefficients K_{y} and K_{x} ?
b. What is the molar flux of n-heptane from gas to liquid?

Problem 01

Problem 01

Problem 1

TABLE 18.1
Characteristics of dumped tower packings ${ }^{12150,27}$

Type	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	Total area, $\mathrm{f}^{2} / \mathrm{ft}^{3}$	Porosity E	Packing factors ${ }^{\text { }}$	
						$F_{\text {F }}$	f_{p}
Raschig rings	Ceramic	2	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.368
		1\%	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		1\%	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		1^{2}	45	76	0.68	110	1.368
		11	40	46	0.71	65	1.078
Intalox saddles	Ceramic	\pm	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		12	39	59	0.76	52	1.18
		2^{2}	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64

