1. (45 points) A $300 \mathrm{~kg} / \mathrm{hr}$ feed stream with composition 42 mass \% solute (C) and 58 mass \% water (diluent A) is to be contacted with solvent (B) in a countercurrent liquid extraction battery. Entering solvent is pure. The exiting raffinate should contain 16 mass \% solute (C) on a solvent free basis. What is the minimum solvent flow rate required to achieve the desired composition of the exiting raffinate (corresponding to an infinite number of stages). A phase diagram is provided.

Be sure to label points $\Delta_{\text {min }}, V_{N+1}, V_{1 \text { min }}, L_{N}, L_{N}$, and $\mathrm{L}_{\mathbf{0}}$
2. (45 points) Feed to a leaching process consists of $1 \mathrm{~kg} / \mathrm{min} \mathrm{CaCO}_{3}$ (insoluble matrix) which carries in its pores $0.4 \mathrm{~kg} / \mathrm{min} \mathrm{NaOH}$ (solute) and $0.6 \mathrm{~kg} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$ (solvent). The entering solvent stream is $3 \mathrm{~kg} / \mathrm{min}$ of pure $\mathrm{H}_{2} \mathrm{O}$. Retention of solution by the CaCO_{3} is given by the following table. Leaching is carried out with a mixer-settler equivalent to a single equilibrium stage.
a. Calculate the NaOH mass fraction of the strong solution (exiting solvent stream with leached NaOH).
b. What is the percent recovery of the NaOH ?

NaOH, wt \%	0	5	10	15	20
kg solution/kg CaCO	3	1.5	1.75	2.20	2.70

3. (10 points) The following mixture will be separated via a train of fractionating columns:

Component	Mole Fraction	Boiling Point (C)
A	0.20	120
B	0.20	125
C	0.20	130
D	0.20	140
E	0.20	190

If the first column is designed with component \mathbf{B} as the light key and component \mathbf{E} as the heavy key, where do the various components exit the first column? Complete the following table describing what fraction of the distillate and bottoms are composed of each component:

Component	Presence in Distillate	Presence in Bottoms
A		
B		
C		
D		
E		

Label Product mole fraction as: large / small / negligible relative to the feed mole fraction. Negligible means that component is almost undetectable.

Phase Diagram for Problem 1

Tie lines

$(0.001,0.08)$ and $(0.753,0.18)$	$(0.019,0.36)$ and $(0.535,0.42)$
$(0.006,0.17)$ and $(0.67,0.27)$	$(0.024,0.42)$ and $(0.41,0.53)$
$(0.01,0.25)$ and $(0.62,0.33)$	$(0.04,0.475)$ and $(0.35,0.58)$
$(0.015,0.31)$ and $(0.573,0.38)$	$(0.052,0.52)$ and $(0.273,0.62)$

