	CE407	Exam 02	July 25, 2019
1.	(45 points) A 300 kg/hr feed stream wi	th composition 42 mass % so	lute (C) and 58 mass % water
	(diluent A) is to be contacted with solv	ent (B) in a countercurrent lic	uid extraction battery.
	Entering solvent is pure. The exiting rate	ffinate should contain 16 mas	ss % solute (C) on a solvent
	free basis. What is the minimum solver	nt flow rate required to achie	ve the desired composition
	of the exiting raffinate (corresponding	to an infinite number of stage	es). A phase diagram is
	provided.		

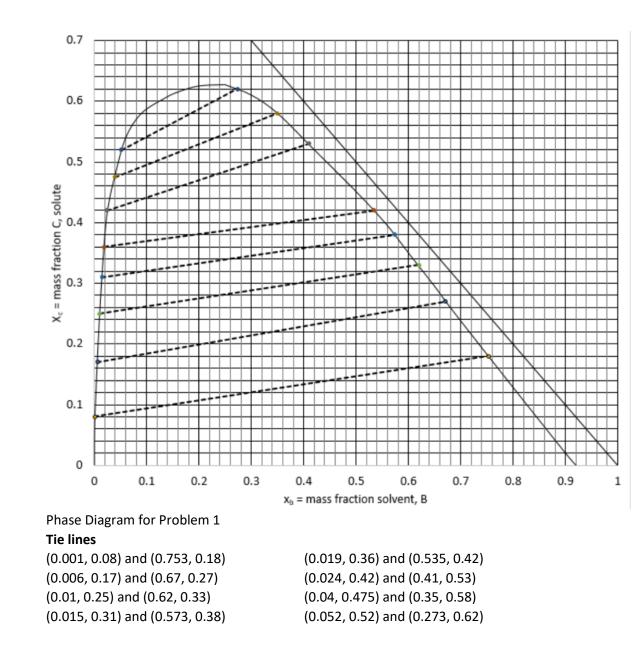
Be sure to label points Δ_{\min} , V_{N+1} , $V_{1\min}$, L_N' , L_N , and L_0

- 2. (45 points) Feed to a leaching process consists of 1 kg/min CaCO_3 (insoluble matrix) which carries in its pores 0.4 kg/min NaOH (solute) and 0.6 kg/min H₂O (solvent). The entering solvent stream is 3 kg/min of pure H_2O . Retention of solution by the CaCO₃ is given by the following table. Leaching is carried out with a mixer-settler equivalent to a single equilibrium stage.
 - a. Calculate the NaOH mass fraction of the strong solution (exiting solvent stream with leached NaOH).

NaOH, wt %	0	5	10	15	20
kg solution/kg CaCO ₃	1.5	1.75	2.20	2.70	3.60

b. What is the percent recovery of the NaOH?

3.	(10 points) The following mixture will be se	parated via a train of fractionating columns:
----	--	---


Component	Mole Fraction	Boiling Point (C)
A	0.20	120
В	0.20	125
С	0.20	130
D	0.20	140
E	0.20	190

If the first column is designed with component **B** as the light key and component **E** as the heavy key, where do the various components exit the first column? Complete the following table describing what fraction of the distillate and bottoms are composed of each component:

Component	Presence in Distillate	Presence in Bottoms
A		
В		
С		
D		
E		

Label Product mole fraction as: large / small / negligible relative to the feed mole fraction. Negligible means that component is almost undetectable.

~~ ~~

