CE 407 Separations

Happy \#1
Instructions: Please read over the entire exam first thing so that you can make a rational decision about how to budget your time. Please think calmly and logically, and work slowly, so that your answers reflect your true knowledge untinged by panic-induced irrationality and careless errors. More than enough data to answer all the questions are supplied on the attached sheets.

1. (60 points) An $80 \mathrm{~mol} / \mathrm{h}$ saturated vapor feed stream comprising 65 mole percent carbon tetrachloride $\left(\mathrm{CCl}_{4}\right.$, light $)$ and 35 mole percent octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right.$, heavy) undergoes continuous distillation at atmospheric pressure in a column fitted with a partial condenser. The top product has CCl_{4} mole fraction equal to 0.97 and the bottom product has CCl_{4} mole fraction equal to 0.025 . The distillation is carried out with reflux ratio $R=2.23$. Answer the following specific questions.
(a) (25 points) How many stages are required in the column itself if all these stages have Murphree efficiencies η_{M} equal to 0.75 ?
(b) (10 points) What is the vapor flow rate \bar{V} below the feed stage?
(b) (25 points) Arbitrarily choose reference states such that $H=0$ for pure liquid CCl_{4} at $77{ }^{\circ} \mathrm{C}$ and $H=0$ for pure liquid octane at $77^{\circ} \mathrm{C}$. What is the enthalpy of the vapor leaving the top stage in the column and entering the partial condenser?
Data and assumptions: Data you may need are given on the attached sheets. Use the McCabe-Thiele method, i.e., assume constant molar flow rates in the rectifying and stripping sections of the column.
2. (40 points) Methanol is stripped from a $9.0 \mathrm{~mol} / \mathrm{min}$ contaminated water stream (composition 99.5 mole percent water, 0.5 mole percent methanol) by countercurrent contact with air at $25^{\circ} \mathrm{C}$ in a stripping tower purchased from Elroy Hutch Heavy Machine Industries ${ }^{\mathrm{TM}}$. Air enters the tower pure. Pressure is atmospheric. Answer the following specific questions.
(a) (20 points) If stripping is carried out using $18.0 \mathrm{~mol} / \mathrm{min}$ of entering air, what is the smallest achievable methanol mole fraction in the exiting liquid, corresponding to an effectively infinite number of stages?
(b) (20 points) If stripping is carried out using $36.0 \mathrm{~mol} / \mathrm{min}$ of entering air, how many ideal stages are required in order for the exiting liquid to have methanol mole fraction equal to 0.0001 ?

Data and assumptions: Data you may need are given on the attached sheet. Make the "usual approximations," i.e., neglect evaporation of water as well as dissolution of air in the liquid. Given the diluteness of the solutions involved, you may assume validity of Henry's law for methanol dissolved in water. Also given the diluteness of the solutions involved, you may use the Kremser equation in any counting of stages.

Data

C_{P} of liquid CCl_{4} is $150 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
C_{P} of liquid octane is $270 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
C_{P} of vapor CCl_{4} is $90 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
C_{P} of vapor octane is $260 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$\Delta H^{\text {rap }}$ of CCl_{4} at its normal boiling point is $29,300 \mathrm{~J} / \mathrm{mol}$
$\Delta H^{\text {rap }}$ of octane at its normal boiling point is $33,800 \mathrm{~J} / \mathrm{mol}$
Henry's law constant for methanol in water at $25^{\circ} \mathrm{C}$ is 282 mm Hg
Color of Elroy's blue jumpsuit is blue

$$
\begin{aligned}
& \text { Henry's law: } \\
& \begin{array}{l}
y_{i} P=\underset{\uparrow}{K_{i}} x_{i} \\
\text { Henry's law constant }
\end{array}
\end{aligned}
$$

Elroy-makic Du Data, Sheet No. 1

Graph paper for \#1

Graph paper for \# 1

