CE407

(40 pts) 500 kg/hr of a feed solution containing a solute (C) mass fraction of 0.25 is to be extracted using 125 kg/hr of a recycled solvent stream (solute C mass fraction = 0.04, solvent mass fraction B = 0.95. The exiting raffinate shall be 0.10 mass fraction solute on a solvent free basis. Use the following equilibria data and phase diagrams on next pages to determine how many extraction stages are required. Use the McCabe-Thiele method to determine the required number of stages.

Diluent Rich (Raffinate)		Solvent Rich (Extract)		
х (х _в)	y (x _c)	х (х _в)	y (x _c)	
0.07	0.22	0.30	0.42	
0.06	0.17	0.40	0.39	
0.045	0.12	0.52	0.30	
0.04	0.06	0.64	0.18	
0.038	0.04	0.685	0.12	
0.035	0.02	0.73	0.06	

Solution

- Step 1
 - \circ Mark L_0 at (0, 0.25)
 - \circ Mark L_{N}^{\prime} at (0, 0.10)
 - $\circ \quad \text{Mark } V_{\text{N+1}} \text{ at } (0.95, 0.04)$
- Step 2
 - Draw line from pure solvent (1, 0) to L_N . The point where this line intersects the diluent rich side of the phase boundary is L_N and is roughly equal to (0.045,0.095). L_N is approximately 0.095.
- Step 3
 - $\circ\quad$ Draw line from L_0 to V_{N+1} and add Mixture point

$$x_{M} = \frac{Fx_{F} + V_{N+1}x_{s}}{F + V_{N+1}} = \frac{500 * 0.25 + 125 * 0.04}{500 + 125} = 0.208$$

• Step 4

• Draw line from L_N through M until it extends to the solvent rich side of the phase boundary. $V_1 = 0.38 = x_c$.

- Step 5
 - $\circ~$ (Switch to a new graph with just $L_{N},\,L_{0},\,V_{1},$ and V_{N+1} shown)
 - Draw lines $\overline{V_1L_0}$ and $\overline{V_{N+1}L_N}$, their intersection is the Δ point.
- Step 6
 - Anchor your rule on the delta point
 - $\circ \quad \mbox{Mark off pairs of points for the operating line. Where the ruler crosses the Raffinate (left-hand) boundary of the phase boundary you will record x_c as x. Where the ruler crosses the right-hand (Extract) boundary record x_c as y.}$
 - \circ $\;$ Choose enough points to generate a reasonably smooth operating curve.

• Operating Line

x	у
0.28	0.38
0.21	0.30
0.16	0.20
0.12	0.10
0.095	0.06

0

• Step 7

• Generate Equilibrium Curve

 $\circ~$ From data given in problem statement, take the x_c value for Raffinate as x and the x_c value for the Extract as y

x (xC)	y (xC)		
0.22	0.42		
0.17	0.39		
0.12	0.30		
0.06	0.18		
0.04	0.12		
0.02	0.06		

- Step 8
 - o Plot Equilibrium and Operating Curves
 - Mark the point $(L_0, V_1) = (0.25, 0.38)$
 - Step off stages from (L_0, V_1) until you reach L_N which is when x = 0.095

This separation requires 2 stages

McCabe-Thiele

2. (40 pts) Benzene will be stripped from a valuable oil by countercurrent contact with air in a tower packed with 2.0" ceramic Raschig rings. The contaminated oil (composition 98 mole % oil and 2 mole % benzene) will enter the tower at 2500 mol/hr and 95% of the entering benzene is to be removed. The flow rate of the incoming air will be 37,500 mol/hr. The density and viscosity of the dilute oil/benzene solution are well approximated by the properties of pure oil. The vapor phase behaves ideally. The tower will operate isothermally at 25 C and at a total pressure of 1 atm. The tower diameter shall be determined to give $\Delta P/ft$ of packing equal to 50% that of $\Delta P_{flood}/ft$. The equilibrium curve at these conditions is **y** = **0.125 x**. You may regard the operating line as being straight. Calculation of the flooding velocity should be based on flow rates at the **top** of the tower, where they are largest. The density of the vapor at the top of the column can be approximated as that of air.

Data:

Air:

MW = 28.9

Benzene:

MW = 78.11 Sc = 1.76 in air Sc = 3500 in oil

Oil:

MW = 106 ρ = 0.83 g/cm³ v = 2.84 cSt μ = 2.36 cP

Packing:

Table included in attachments Gas Constant = 0.73024 ft³ atm / (R lbmol) Gas Constant = 82.05745 cm³ atm / (K mol)

R is degrees Rankine

- a. What is the required diameter for the tower? Use the following graph and the correlation $\Delta P_{flood}/ft = 0.115 F_P^{0.7}$ inches water column per foot of packing
- b. What height of packing is required? Base your solution on $y y^*$. Use the correlations from lecture to determine H_x and H_y .

$$H_{Oy} = H_y + m \frac{V}{L} H_x$$

Solution: Problem states that 95% of the Benzene will be removed from the liquid stream:

Moles Benzene in the Liquid stream at the top, a: = 0.02 * 2500 = 50 moles benzene

Moles Benzene in the liquid stream at the bottom, b := (1 - 0.95) * 50 = 2.5 moles benezene

Mole fraction of Benzene in the liquid stream at the bottom:

$$x_b = \frac{2.5}{2.5 + 2450} = 0.00102$$

Moles of benzene in the vapor stream at top:

50 moles entering with liquid at the top + 0 moles entering with vapor at the bottom – 2.5 moles exiting with liquid at the bottom = 47.5 moles benzene exiting with vapor at the top

Mole fraction benzene in exiting vapor:

$$y_a = \frac{47.5}{47.5 + 37500} = 0.00127$$

Exam 0 Problem 02

a. Now we use the flooding correlation given:

$$\Delta P_{flood} = 0.115 * F_P^{0.7}$$

(Note that for $F_p = 65$ this correlation actually should be ignored and we can just go with $\Delta P_{flood} = 2.0$ " *WC*). But as you were directed to use the above correlation, I will show that calculation.

1 hour basis

From the data table given we see that for 2 " ceramic Raschig Rings $F_p = 65$ and $f_p = 0.92$

$$\Delta P_{flood} = 0.115 * 65^{0.7} = 2.14 \frac{112.5}{ft}$$

We are instructed to work at 50% of the flooding pressure drop, therefore we will use 1.07 " water per foot of packing.

To use the attached chart we must calculate $\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x}}$

As indicated in the problem statement, we will evaluate this at the top of the tower where flooding is the most likely to happen.

Although we do not know the cross-sectional are required to calculate G_x or G_y , the ratio of them is the same as the ratio of the mass flows of the liquid and vapor.

Mass flow of vapor:

At top = 37500 mol air/hr * 28.9 g / mol + 47.5 mol benzene/hr * 78.11 g /mol = 1087.5 kg/hr =
$$S * G_y$$

Mass flow of liquid:

At top = 2450 mol oil/hr * 106 g/mol + 50 mol benzene/hr * 78.11 g/mol = 263.6 kg/hr = $S * G_x$

$$\frac{G_x}{G_y} = \frac{S * G_x}{S * G_y} = \frac{263.6}{1087.5} = 0.243$$

The density of the liquid can be approximated as the density of oil,

$$\rho_x = 0.83 \ g/cm^3$$

The density of the vapor can be obtained using the ideal gas law:

$$\rho_y = \frac{MWP}{RT} = \frac{28.9 \frac{g}{mol} \ 1 \ atm}{82.05745 \ \frac{cm^3 atm}{K \ mol} \ 298.15 \ K} = 0.00118 \ \frac{g}{cm^3}$$

Now:

$$\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x}} = 0.243 \sqrt{\frac{0.00118}{0.83}} = 0.0092$$

From graph we can read (by interpolating between the lines from 1.0 and 1.5 "water/ft) that

 $C_s F_p^{0.5} \nu^{0.05} = 2.0$ $C_s 65^{0.5} 2.84^{0.05} = 2.0$ $C_s = 0.235$

By definition:

$$C_s = u_0 \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$

0.235 = $u_0 \sqrt{\frac{0.00118}{0.83 - 0.00118}} = 0.0377 u_0$
 $u_0 = 6.23 ft/s$

Calculate volumetric flow:

$$1087.5 \frac{kg}{hr} * \frac{1000 g}{kg} * \frac{cm^3}{0.00118 g} * \frac{hr}{3600 s} * \left(\frac{in}{2.54 cm}\right)^3 * \left(\frac{ft}{12 in}\right)^3 = 9.04 \frac{ft^3}{s}$$

The required area is:

$$Area = \frac{volumetric flow}{linear velocity} = \frac{9.04 \frac{ft^3}{s}}{6.23 ft/s} = 1.45 ft^2 = \frac{\pi D^2}{4}$$
$$D = 1.36 ft$$

b) Now that we have the cross-sectional area we can calculate G_x and G_y independently:

Mass flow of vapor:

1087.5 kg/hr * (2.2 lb/kg) = 2397.5 lb/hr =
$$S * G_y$$

Mass flow of liquid:

263.6 kg/hr * (2.2 lb/kg) = 581.1 lb/hr =
$$S * G_x$$

$$G_x = \frac{581.1 \frac{lb}{hr}}{1.45 ft^2} = 400.8 \frac{lb}{ft^2 hr}$$
$$G_y = \frac{2397.5 \frac{lb}{hr}}{1.45 ft^2} = 1653.4 \frac{lb}{ft^2 hr}$$

We can now calculate the height of the transfer unit:

$$H_{x} = 0.9 ft \left(\frac{G_{x/\mu}}{1500 \frac{lb}{ft^{2} hr} / 0.891 cP} \right)^{0.3} \left(\frac{S_{c}}{381} \right)^{0.5} \frac{1}{f_{p}}$$
$$H_{x} = 0.9 ft \left(\frac{400.8 \frac{lb}{ft^{2} hr} / 0.891 cP}{1500 \frac{lb}{ft^{2} hr} / 0.891 cP} \right)^{0.3} \left(\frac{3500}{381} \right)^{0.5} \frac{1}{0.92} = 1.48 ft$$

$$H_{y} = 1.4 ft \left(\frac{G_{y}}{500 \frac{lb}{ft^{2} hr}}\right)^{0.3} \left(\frac{1500 \frac{lb}{ft^{2} hr}}{G_{x}}\right)^{0.4} \left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}}$$
$$H_{y} = 1.4 ft \left(\frac{1653.4}{500 \frac{lb}{ft^{2} hr}}\right)^{0.3} \left(\frac{1500 \frac{lb}{ft^{2} hr}}{400.8}\right)^{0.4} \left(\frac{1.76}{0.66}\right)^{0.5} \frac{1}{0.92} = 6.03 ft$$

Now we can calculate height of overall transfer unit:

$$H_{Oy} = H_y + m \frac{V}{L} * H_x$$

From problem statement we know that y = 0.125 x and therefore m = 0.125

$$V/L = \frac{37500 + 47.5}{2500} = 15.0$$

Now:

$$H_{0y} = 6.03 ft + 0.125 * 15.0 * 1.48 ft = 8.81 ft$$

Now we will calculate the number of transfer units:

$$N_{Oy} = \frac{y_b - y_a}{(y - y^*)_{lm}}$$

$$y_a = 0.00127$$

 $y_b = 0$
 $y_a^* = 0.125 * x_a = 0.125 * 0.02 = 0.0025$
 $y_b^* = 0.125 * x_b = 0.125 * 0.00102 = 0.00013$

$$y_b - y_a = 0 - 0.00127 = -0.00127$$
$$y_a - y_a^* = 0.00127 - 0.0025 = -0.00123$$
$$y_b - y_b^* = 0 - 0.00013 = -0.00013$$

$$\overline{(\mathbf{y} - \mathbf{y}^*)_{lm}} = \frac{(y_a - y_a^*) - (y_b - y_b^*)}{\ln\frac{y_a - y_a^*}{y_b - y_b^*}} = \frac{-0.00123 - (-0.00013)}{\ln\frac{-0.00123}{-0.00013}} = \frac{-0.0011}{2.24723} = -0.0004895$$

$$N_{0y} = \frac{y_b - y_a}{(y - y^*)_{lm}} = \frac{-0.00127}{-0.0004895} = 2.595$$

The required height of the packing can be calculated as:

$$Z_t = H_{0y} * N_{0y} = 8.81 ft * 2.595 = 22.9 f$$

3. (20 pts) *n*-Heptane undergoes mass transfer from a bulk gas (air + n-heptane) phase, where its mole fraction y = 0.03, to a bulk liquid (mineral oil + n-heptane) phase, where its mole fraction x = 0.005, through a gas-liquid interface. Temperature and pressure are 35 C and 1.0 atmosphere. The vapor pressure of n-Heptane at this temperature is 74.02 mm Hg. Mass transfer coefficients are as follows:

$$k_y = 7.0 * 10^{-6} \frac{mol}{cm^2 s}$$

 $k_x = 3.5 * 10^{-6} \frac{mol}{cm^2 s}$

Assuming validity of Raoult's Law for the equilibrium relation,

- a. What are the overall mass transfer coefficients K_y and K_x ?
- b. What is the molar flux of n-heptane from gas to liquid?

Solution:

Mole fractions refer to n-Heptane

a. Overall Mass Transfer Coefficients

$$K_y = \left(\frac{1}{k_y} + \frac{m}{k_x}\right)^{-1}$$
 and $K_x = \left(\frac{1}{k_x} + \frac{1}{m k_y}\right)^{-1}$

Assuming Raoult's Law leads to equilibrium being expressed as:

$$y_i = \frac{P_{n-heptane}^{sat}}{P} * x_i$$

$P_{n-heptane}^{sat} = 74.02 \ mm \ Hg$

$$y_i = \frac{74.02 \ mm \ Hg}{760} * \ x_i = 0.09739 \ x_i$$

 $y_i = m * x_i = 0.09739 x_i$, so m = 0.09739

$$K_{y} = \left(\frac{1}{k_{y}} + \frac{m}{k_{x}}\right)^{-1}$$

$$K_{y} = \left(\frac{1}{7.0 * 10^{-6} \frac{mol}{cm^{2}s}} + \frac{0.09739}{3.5 * 10^{-6} \frac{mol}{cm^{2}s}}\right)^{-1} = 5.859 * 10^{-6} \frac{mol}{cm^{2}s}$$

$$K_{x} = \left(\frac{1}{k_{x}} + \frac{1}{mk_{y}}\right)^{-1}$$

$$K_x = \left(\frac{1}{3.5 * 10^{-6} \frac{mol}{cm^2 s}} + \frac{1}{0.09739 * 7.0 * 10^{-6} \frac{mol}{cm^2 s}}\right)^{-1} = 5.706 * 10^{-7} \frac{mol}{cm^2 s}$$

b. Molar Flux of *n*-Heptane

Calculate flux using overall coefficients (only need to do one method...)

Overall Gas Phase Calculation:

$$N_{n-heptane} = K_y * (y - y^*) \text{ where } y^* = mx = 0.09739 * 0.005 = 4.870 * 10^{-4}$$
$$N_{n-heptane} = 5.859 * 10^{-6} \frac{mol}{cm^2 s} * (0.03 - 4.870 * 10^{-4}) = \frac{1.729 * 10^{-7}}{1.729 * 10^{-7}} \frac{mol}{cm^2 s}$$

Overall Liquid Phase Calculation:

$$N_{n-heptane} = K_x * (x^* - x) \text{ where } x^* = \frac{y}{m} = \frac{0.03}{0.09739} = 0.3080$$
$$N_{n-heptane} = 5.706 * 10^{-7} \frac{mol}{cm^2 s} * (0.3080 - 0.005) = \frac{1.729 * 10^{-7}}{1.729 * 10^{-7}} \frac{mol}{cm^2 s}$$

To do the interfacial methods you must solve for the intefacial mole fractions: Equal Molar Flux requirement -

$$\mathbf{k}_{\mathbf{y}} * (\mathbf{y} - \mathbf{y}_{i}) = \mathbf{k}_{\mathbf{x}} * (\mathbf{x}_{i} - \mathbf{x})$$

Equilibrium requirement –

$$y_i = 0.09739 x_i$$

Substitute equilibrium into molar flux... (drop the 10⁻⁶, as it appears on both sides...)

7.0 * (0.03 -
$$y_i$$
) = 3.5 * $\left(\frac{y_i}{0.09739} - 0.005\right)$

$$y_i = \frac{7.0 * 0.03 + 3.5 * 0.005}{7 + \frac{3.5}{0.09739}}$$
$$y_i = 0.0053$$

$$x_i = \frac{y_i}{0.09739} = \frac{0.0053}{0.09739} = 0.0544$$

Gas Phase Calculation:

$$N_{n-heptane} = k_y * (y - y_i) = 7.0 * 10^{-6} \frac{mol}{cm^2 s} * (0.03 - 0.0053)$$
$$= \frac{1.729 * 10^{-7} \frac{mol}{cm^2 s}}{10^{-7} \frac{mol}{cm^2 s}}$$

Liquid Phase Calculation

$$N_{n-heptane} = k_x * (x_i - x) = 3.5 * 10^{-6} \frac{mol}{cm^2 s} * (0.0544 - 0.005)$$
$$= \frac{1.729 * 10^{-7} \frac{mol}{cm^2 s}}{10^{-7} \frac{mol}{cm^2 s}}$$

All methods to calculate the flux lead to the same answer!

Туре	Material	Nominal size, in.	Bulk density,† lb/ft ³	Total area, ¹ ft ² /ft ³	Porosity E	Packing factors [†]	
						F_p	ſ,
Raschig rings	Ceramic	4	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.36§
		14	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.92§
Pall rings	Metal	1	30	63	0.94	56	1.54
	10.000	11	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		14	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	ĩ	54	142	0.62	240	1.588
	cermine	12	45	76	0.68	110	1.36§
		14	40	46	0.71	65	1.07§
Intalox saddles	Ceramic	Ĩ.	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
	*	11	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64

TABLE 18.1 Characteristics of dumped tower packings^{12,156,27}

