1. (40 pts) $500 \mathrm{~kg} / \mathrm{hr}$ of a feed solution containing a solute (C) mass fraction of 0.25 is to be extracted using $125 \mathrm{~kg} / \mathrm{hr}$ of a recycled solvent stream (solute C mass fraction $=0.04$, solvent mass fraction $B=0.95$. The exiting raffinate shall be 0.10 mass fraction solute on a solvent free basis. Use the following equilibria data and phase diagrams on next pages to determine how many extraction stages are required. Use the McCabe-Thiele method to determine the required number of stages.

Diluent Rich (Raffinate)		Solvent Rich (Extract)	
$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$	$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$
0.07	0.22	0.30	0.42
0.06	0.17	0.40	0.39
0.045	0.12	0.52	0.30
0.04	0.06	0.64	0.18
0.038	0.04	0.685	0.12
0.035	0.02	0.73	0.06

Solution

- \quad Step 1
- Mark L_{0} at $(0,0.25)$
- Mark L_{N} at $(0,0.10)$
- Mark $\mathbf{V}_{\mathrm{N}+1}$ at $(0.95,0.04)$
- Step 2
- Draw line from pure solvent $(1,0)$ to \mathbf{L}_{N}. The point where this line intersects the diluent rich side of the phase boundary is \mathbf{L}_{N} and is roughly equal to ($0.045,0.095$). \mathbf{L}_{N} is approximately 0.095 .
- Step 3
- Draw line from \mathbf{L}_{0} to $\mathbf{V}_{\mathrm{N}+1}$ and add Mixture point

$$
x_{M}=\frac{F x_{F}+V_{N+1} x_{s}}{F+V_{N+1}}=\frac{500 * 0.25+125 * 0.04}{500+125}=0.208
$$

- Step 4
- Draw line from $\mathbf{L}_{\mathbf{N}}$ through \mathbf{M} until it extends to the solvent rich side of the phase boundary. $\mathbf{V}_{\mathbf{1}}=\mathbf{0 . 3 8}=\mathbf{x}_{\mathbf{c}}$.

Exam 02 Problem 01

- Step 5
- (Switch to a new graph with just $\mathbf{L}_{\mathbf{N}}, \mathbf{L}_{0}, \mathbf{V}_{1}$, and $\mathbf{V}_{\mathrm{N}+1}$ shown)
- Draw lines $\overline{\boldsymbol{V}_{\mathbf{1}} \boldsymbol{L}_{\mathbf{0}}}$ and $\overline{\boldsymbol{V}_{N+1} \boldsymbol{L}_{\boldsymbol{N}}}$, their intersection is the Δ point.
- Step 6
- Anchor your rule on the delta point
- Mark off pairs of points for the operating line. Where the ruler crosses the Raffinate (left-hand) boundary of the phase boundary you will record $\mathbf{x}_{\mathbf{c}}$ as \mathbf{x}. Where the ruler crosses the right-hand (Extract) boundary record \mathbf{x}_{c} as \mathbf{y}.
- Choose enough points to generate a reasonably smooth operating curve.
-

Operating Line

\mathbf{x}	\mathbf{y}
0.28	0.38
0.21	0.30
0.16	0.20
0.12	0.10
0.095	0.06

- Step 7
- Generate Equilibrium Curve
- From data given in problem statement, take the \mathbf{x}_{c} value for Raffinate as \mathbf{x} and the $\mathbf{x}_{\mathbf{c}}$ value for the Extract as \mathbf{y}

$\mathbf{x} \mathbf{(x C)}$	$\mathbf{y} \mathbf{(x C})$
0.22	0.42
0.17	0.39
0.12	0.30
0.06	0.18
0.04	0.12
0.02	0.06

- \quad Step 8
- Plot Equilibrium and Operating Curves
- Mark the point $\left(\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{V}_{\mathbf{1}}\right)=(\mathbf{0} . \mathbf{2 5}, \mathbf{0} . \mathbf{3 8})$
- Step off stages from $\left(\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{V}_{\mathbf{1}}\right)$ until you reach $\boldsymbol{L}_{\boldsymbol{N}}$ which is when $\boldsymbol{x}=\mathbf{0 . 0 9 5}$

This separation requires 2 stages

McCabe-Thiele

2. (40 pts) Benzene will be stripped from a valuable oil by countercurrent contact with air in a tower packed with $2.0^{\prime \prime}$ ceramic Raschig rings. The contaminated oil (composition 98 mole $\%$ oil and 2 mole \% benzene) will enter the tower at $2500 \mathrm{~mol} / \mathrm{hr}$ and 95% of the entering benzene is to be removed. The flow rate of the incoming air will be $37,500 \mathrm{~mol} / \mathrm{hr}$. The density and viscosity of the dilute oil/benzene solution are well approximated by the properties of pure oil. The vapor phase behaves ideally. The tower will operate isothermally at 25 C and at a total pressure of 1 atm . The tower diameter shall be determined to give $\Delta \mathrm{P} / \mathrm{ft}$ of packing equal to 50% that of $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}$. The equilibrium curve at these conditions is $\mathbf{y}=\mathbf{0 . 1 2 5} \mathbf{x}$. You may regard the operating line as being straight. Calculation of the flooding velocity should be based on flow rates at the top of the tower, where they are largest. The density of the vapor at the top of the column can be approximated as that of air.

Data:
Air:

$$
\text { MW }=28.9
$$

Benzene:

$$
\begin{aligned}
& M W=78.11 \\
& S C=1.76 \text { in air } \\
& S C=3500 \text { in oil }
\end{aligned}
$$

Oil:

$$
\begin{aligned}
& \text { MW }=106 \\
& \rho=0.83 \mathrm{~g} / \mathrm{cm}^{3} \\
& \nu=2.84 \mathrm{cSt} \\
& \mu=2.36 \mathrm{cP}
\end{aligned}
$$

Packing:
Table included in attachments
Gas Constant $=0.73024 \mathrm{ft}^{3} \mathrm{~atm} /(\mathrm{R} \mathrm{Ibmol}) \quad \mathrm{R}$ is degrees Rankine
Gas Constant $=82.05745 \mathrm{~cm}^{3}$ atm $/(\mathrm{K} \mathrm{mol})$
a. What is the required diameter for the tower? Use the following graph and the correlation $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}=0.115 \mathrm{~F}_{\mathrm{P}}{ }^{0.7}$ inches water column per foot of packing
b. What height of packing is required? Base your solution on $y-y^{*}$. Use the correlations from lecture to determine H_{x} and H_{y}.

$$
H_{O y}=H_{y}+m \frac{V}{L} H_{x}
$$

Solution: Problem states that 95% of the Benzene will be removed from the liquid stream:
Moles Benzene in the Liquid stream at the top, a: $=0.02$ * $2500=50$ moles benzene
Moles Benzene in the liquid stream at the bottom, $\mathrm{b}:=(1-0.95) * 50=2.5$ moles benezene

Mole fraction of Benzene in the liquid stream at the bottom:

$$
x_{b}=\frac{2.5}{2.5+2450}=0.00102
$$

Moles of benzene in the vapor stream at top:
50 moles entering with liquid at the top +0 moles entering with vapor at the bottom -2.5 moles exiting with liquid at the bottom $=\mathbf{4 7 . 5}$ moles benzene exiting with vapor at the top

Mole fraction benzene in exiting vapor:

$$
y_{a}=\frac{47.5}{47.5+37500}=0.00127
$$

Exam 0 Problem 02

1 hour basis

$$
\begin{aligned}
& \mathrm{L}_{\text {tot }}=2500 \mathrm{~mol} \\
& \mathrm{~L}_{\mathrm{c}}=0.98 * 2500=2450 \mathrm{~mol} \text { oil } \\
& \mathrm{L}_{\mathrm{a}}=0.02 * 2500=50 \mathrm{~mol} \text { benzene } \\
& x_{\mathrm{a}}=0.02
\end{aligned}
$$

a. Now we use the flooding correlation given:

$$
\Delta P_{\text {flood }}=0.115 * F_{P}^{0.7}
$$

(Note that for $\mathrm{F}_{\mathrm{p}}=65$ this correlation actually should be ignored and we can just go with $\Delta P_{\text {flood }}=2.0$ " WC). But as you were directed to use the above correlation, I will show that calculation.

From the data table given we see that for 2 " ceramic Raschig Rings $F_{p}=65$ and $f_{p}=\mathbf{0 . 9 2}$

$$
\Delta P_{\text {flood }}=0.115 * 65^{0.7}=2.14 \frac{\mathrm{H} 20}{f t}
$$

We are instructed to work at 50% of the flooding pressure drop, therefore we will use 1.07 " water per foot of packing.

To use the attached chart we must calculate $\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}$

As indicated in the problem statement, we will evaluate this at the top of the tower where flooding is the most likely to happen.

Although we do not know the cross-sectional are required to calculate $\mathbf{G}_{\mathbf{x}}$ or $\mathbf{G}_{\mathbf{y}}$, the ratio of them is the same as the ratio of the mass flows of the liquid and vapor.

Mass flow of vapor:
At top $=37500 \mathrm{~mol}$ air $/ \mathrm{hr} * 28.9 \mathrm{~g} / \mathrm{mol}+47.5 \mathrm{~mol}$ benzene $/ \mathrm{hr} * 78.11 \mathrm{~g} / \mathrm{mol}=$ $1087.5 \mathrm{~kg} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{y}}$

Mass flow of liquid:
At top $=2450 \mathrm{~mol} \mathrm{oil} / \mathrm{hr} * 106 \mathrm{~g} / \mathrm{mol}+50 \mathrm{~mol}$ benzene $/ \mathrm{hr} * 78.11 \mathrm{~g} / \mathrm{mol}=263.6$ $\mathrm{kg} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{x}}$

$$
\frac{G_{x}}{G_{y}}=\frac{S * G_{x}}{S * G_{y}}=\frac{263.6}{1087.5}=0.243
$$

The density of the liquid can be approximated as the density of oil,

$$
\rho_{x}=0.83 \mathrm{~g} / \mathrm{cm}^{3}
$$

The density of the vapor can be obtained using the ideal gas law:

$$
\rho_{y}=\frac{M W P}{R T}=\frac{28.9 \frac{\mathrm{~g}}{\mathrm{~mol}} 1 \mathrm{~atm}}{82.05745 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{\mathrm{Kmol}} 298.15 \mathrm{~K}}=0.00118 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Now:

$$
\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}=0.243 \sqrt{\frac{0.00118}{0.83}}=0.0092
$$

From graph we can read (by interpolating between the lines from 1.0 and 1.5 "water/ft) that

$$
\begin{gathered}
C_{s} F_{p}^{0.5} v^{0.05}=2.0 \\
C_{s} 65^{0.5} 2.84^{0.05}=2.0 \\
C_{s}=0.235
\end{gathered}
$$

By definition:

$$
\begin{gathered}
C_{s}=u_{0} \sqrt{\frac{\rho_{y}}{\rho_{x}-\rho_{y}}} \\
0.235=u_{0} \sqrt{\frac{0.00118}{0.83-0.00118}}=0.0377 u_{0} \\
u_{0}=6.23 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

Calculate volumetric flow:

$$
1087.5 \frac{\mathrm{~kg}}{\mathrm{hr}} * \frac{1000 \mathrm{~g}}{\mathrm{~kg}} * \frac{\mathrm{~cm}^{3}}{0.00118 \mathrm{~g}} * \frac{\mathrm{hr}}{3600 \mathrm{~s}} *\left(\frac{\mathrm{in}}{2.54 \mathrm{~cm}}\right)^{3} *\left(\frac{f t}{12 \mathrm{in}}\right)^{3}=9.04 \frac{f t^{3}}{\mathrm{~s}}
$$

The required area is:

$$
\begin{gathered}
\text { Area }=\frac{\text { volumetric flow }}{\text { linear velocity }}=\frac{9.04 \frac{f t^{3}}{s}}{6.23 \mathrm{ft} / \mathrm{s}}=1.45 \mathrm{ft}^{2}=\frac{\pi D^{2}}{4} \\
D=1.36 \mathrm{ft}
\end{gathered}
$$

b) Now that we have the cross-sectional area we can calculate $\mathbf{G}_{\mathbf{x}}$ and $\mathbf{G}_{\mathbf{y}}$ independently:

Mass flow of vapor:

$$
1087.5 \mathrm{~kg} / \mathrm{hr} *(2.2 \mathrm{lb} / \mathrm{kg})=2397.5 \mathrm{lb} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{y}}
$$

Mass flow of liquid:

$$
\begin{array}{r}
263.6 \mathrm{~kg} / \mathrm{hr} *(2.2 \mathrm{lb} / \mathrm{kg})=581.1 \mathrm{lb} / \mathrm{hr}=S * \boldsymbol{G}_{x} \\
\boldsymbol{G}_{x}=\frac{581.1 \frac{\boldsymbol{l b}}{\boldsymbol{h r}}}{1.45 \boldsymbol{f t ^ { 2 }}}=400.8 \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2} \boldsymbol{h r}} \\
\boldsymbol{G}_{y}=\frac{2397.5 \frac{\boldsymbol{l b}}{\boldsymbol{h r}}}{1.45 \boldsymbol{f} \boldsymbol{t}^{2}}=1653.4 \frac{\boldsymbol{l b}}{\boldsymbol{f t}^{2} \boldsymbol{h r}}
\end{array}
$$

We can now calculate the height of the transfer unit:

$$
\begin{gathered}
H_{x}=0.9 f t\left(\frac{G_{x} / \mu}{1500 \frac{l b}{f t^{2} h r} /{ }_{0.891} c P}\right)^{0.3}\left(\frac{S_{c}}{381}\right)^{0.5} \frac{1}{f_{p}} \\
H_{x}=0.9 f t\left(\frac{400.8 \frac{l b}{f t^{2} h r} / 2.36 c P}{1500 \frac{l b}{f t^{2} h r} /{ }_{0.891}}\right)^{0.3}\left(\frac{3500}{381}\right)^{0.5} \frac{1}{0.92}=1.48 f t \\
H_{y}=1.4 f t\left(\frac{G_{y}}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{G_{x}}\right)^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}} \\
H_{y}=1.4 f t\left(\frac{1653.4}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{400.8}\right)^{0.4}\left(\frac{1.76}{0.66}\right)^{0.5} \frac{1}{0.92}=6.03 f t
\end{gathered}
$$

Now we can calculate height of overall transfer unit:

$$
H_{o y}=H_{y}+m \frac{V}{L} * H_{x}
$$

From problem statement we know that $\mathrm{y}=0.125 \mathrm{x}$ and therefore $\mathrm{m}=0.125$

$$
V / L=\frac{37500+47.5}{2500}=15.0
$$

Now:

$$
H_{o y}=6.03 \mathrm{ft}+0.125 * 15.0 * 1.48 \mathrm{ft}=8.81 \mathrm{ft}
$$

Now we will calculate the number of transfer units:

$$
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}}
$$

$y_{a}=0.00127$
$y_{b}=0$
$y_{a}^{*}=0.125 * x_{a}=0.125 * 0.02=0.0025$
$y_{b}^{*}=0.125 * x_{b}=0.125 * 0.00102=0.00013$
$y_{b}-y_{a}=0-0.00127=-0.00127$
$y_{a}-y_{a}^{*}=0.00127-0.0025=-0.00123$
$y_{b}-y_{b}^{*}=0-0.00013=-0.00013$

$$
\begin{gathered}
\overline{\left(\boldsymbol{y}-\boldsymbol{y}^{*}\right)_{\operatorname{lm}}}=\frac{\left(y_{a}-y_{a}^{*}\right)-\left(y_{b}-y_{b}^{*}\right)}{\ln \frac{y_{a}-y_{a}^{*}}{y_{b}-y_{b}^{*}}=\frac{-0.00123-(-0.00013)}{\ln \frac{-0.00123}{-0.00013}}=\frac{-0.0011}{2.24723}=-0.0004895} \\
\boldsymbol{N}_{\boldsymbol{O} \boldsymbol{y}}=\frac{\boldsymbol{y}_{\boldsymbol{b}}-\boldsymbol{y}_{\boldsymbol{a}}}{\left(\boldsymbol{y}-\boldsymbol{y}^{*}\right)_{l \boldsymbol{l}}}
\end{gathered}=\frac{-0.00127}{-0.0004895}=\mathbf{2 . 5 9 5} .
$$

The required height of the packing can be calculated as:

$$
Z_{t}=H_{o y} * N_{O y}=8.81 \mathrm{ft} * 2.595=22.9 \mathrm{f}
$$

3. (20 pts) n-Heptane undergoes mass transfer from a bulk gas (air +n -heptane) phase, where its mole fraction $y=0.03$,to a bulk liquid (mineral oil +n -heptane) phase, where its mole fraction $x=0.005$, through a gas-liquid interface. Temperature and pressure are 35 C and 1.0 atmosphere. The vapor pressure of n-Heptane at this temperature is 74.02 mm Hg . Mass transfer coefficients are as follows:

$$
\begin{aligned}
& k_{y}=7.0 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} \\
& k_{x}=3.5 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

Assuming validity of Raoult's Law for the equilibrium relation,
a. What are the overall mass transfer coefficients K_{y} and K_{x} ?
b. What is the molar flux of n-heptane from gas to liquid?

Solution:

Mole fractions refer to \mathbf{n}-Heptane

a. Overall Mass Transfer Coefficients

$$
K_{y}=\left(\frac{1}{k_{y}}+\frac{m}{k_{x}}\right)^{-1} \text { and } K_{x}=\left(\frac{1}{k_{x}}+\frac{1}{m k_{y}}\right)^{-1}
$$

Assuming Raoult's Law leads to equilibrium being expressed as:

$$
y_{i}=\frac{\boldsymbol{P}_{n-\text { heptane }}^{\text {sat }}}{P} * x_{i}
$$

$$
\begin{gathered}
P_{n-h e p t a n e}^{\text {sat }}=74.02 \mathrm{~mm} \mathrm{Hg} \\
y_{i}=\frac{74.02 \mathrm{~mm} \mathrm{Hg}}{760} * x_{i}=0.09739 x_{i} \\
y_{i}=m * x_{i}=0.09739 x_{i}, \text { so } m=0.09739 \\
K_{y}=\left(\frac{1}{k_{y}}+\frac{m}{k_{x}}\right)^{-1} \\
K_{y}=\left(\frac{1}{7.0 * 10^{-6} \frac{m o l}{c m^{2} s}}+\frac{0.09739}{3.5 * 10^{-6} \frac{m o l}{c m^{2} s}}\right)^{-1}=5.859 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} \\
K_{x}=\left(\frac{1}{3.5 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}}+\frac{1}{0.09739 * 7.0 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm} \mathrm{~m}^{2} \mathrm{~s}}}\right)^{-1}=5.706 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{gathered}
$$

b. Molar Flux of n-Heptane

Calculate flux using overall coefficients (only need to do one method...)
Overall Gas Phase Calculation:

$$
\begin{aligned}
& N_{n-\text { heptane }}=K_{y} *\left(y-y^{*}\right) \text { where } y^{*}=m x=0.09739 * 0.005=4.870 * 10^{-4} \\
& N_{n-\text { heptane }}=5.859 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} *\left(0.03-4.870 * 10^{-4}\right)=1.729 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

Overall Liquid Phase Calculation:

$$
\begin{aligned}
& N_{n-\text { heptane }}=K_{x} *\left(x^{*}-x\right) \text { where } x^{*}=\frac{y}{m}=\frac{0.03}{0.09739}=0.3080 \\
& N_{n-\text { heptane }}=5.706 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} *(0.3080-0.005)=1.729 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

To do the interfacial methods you must solve for the intefacial mole fractions:
Equal Molar Flux requirement -

$$
k_{y} *\left(y-y_{i}\right)=k_{x} *\left(x_{i}-x\right)
$$

Equilibrium requirement -

$$
y_{i}=0.09739 x_{i}
$$

Substitute equilibrium into molar flux... (drop the 10^{-6}, as it appears on both sides...)

$$
7.0 *\left(0.03-y_{i}\right)=3.5 *\left(\frac{y_{i}}{0.09739}-0.005\right)
$$

$$
\begin{gathered}
y_{i}=\frac{7.0 * 0.03+3.5 * 0.005}{7+3.5 / 0.09739} \\
y_{i}=0.0053 \\
x_{i}=\frac{y_{i}}{0.09739}=\frac{0.0053}{0.09739}=0.0544
\end{gathered}
$$

Gas Phase Calculation:

$$
\begin{aligned}
N_{n-\text { heptane }}= & k_{y} *\left(y-y_{i}\right)=7.0 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} *(0.03-0.0053) \\
& =1.729 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

Liquid Phase Calculation

$$
\begin{aligned}
N_{n-\text { heptane }}= & k_{x} *\left(x_{i}-x\right)=3.5 * 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}} *(0.0544-0.005) \\
& =1.729 * 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
\end{aligned}
$$

All methods to calculate the flux lead to the same answer!

Problem 01

Problem 01

Problem 1

TABLE 18.1
Characteristics of dumped tower packings ${ }^{12150,27}$

Type	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	Total area, $\mathrm{f}^{2} / \mathrm{ft}^{3}$	Porosity E	Packing factors ${ }^{\text { }}$	
						$F_{\text {F }}$	f_{p}
Raschig rings	Ceramic	2	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.368
		1\%	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		1\%	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		1^{2}	45	76	0.68	110	1.368
		11	40	46	0.71	65	1.078
Intalox saddles	Ceramic	\pm	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		12	39	59	0.76	52	1.18
		2^{2}	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64

