1. (50 pts$) 500 \mathrm{~kg} / \mathrm{hr}$ of a feed solution containing a solute (C) mass fraction of 0.30 is to be extracted using $50 \mathrm{~kg} / \mathrm{hr}$ of a pure solvent stream. You are required to recover 90% of the solute in the extract stream. The mass fraction of the exiting extract is to be 0.40 . Use the following equilibria data and phase diagrams on next pages to determine how many extraction stages are required. Use the McCabe-Thiele method to determine the required number of stages.

Diluent Rich (Raffinate)		Solvent Rich (Extract)	
$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$	$\mathbf{x}\left(\mathbf{x}_{\mathbf{B}}\right)$	$\mathbf{y}\left(\mathbf{x}_{\mathbf{c}}\right)$
0.07	0.22	0.30	0.42
0.06	0.17	0.40	0.39
0.045	0.12	0.52	0.30
0.04	0.06	0.64	0.18
0.038	0.04	0.685	0.12
0.035	0.02	0.73	0.06

Solution

- Step 1
- Determine the amount of solute in each stream:

\circ
- Entering Feed:
- $x_{0} * L_{0}=0.30 * 500=150 \mathrm{~kg}$
- Entering Solvent
- $y_{N+1} * V_{N+1}=0 * 50=0 \mathrm{~kg}$
- Exiting Extract Stream
- 90\% Recovery of Solute
- $0.90 *$ Solute in Feed $=0.90 * 150 \mathrm{~kg}=135 \mathrm{~kg}=y_{1} * V_{1}$

```
- Solute Balance
- }\mp@subsup{y}{N+1}{*}*\mp@subsup{V}{N+1}{}+\mp@subsup{x}{0}{}*\mp@subsup{L}{0}{}=\mp@subsup{y}{1}{}*\mp@subsup{V}{1}{}+\mp@subsup{x}{N}{}*\mp@subsup{L}{N}{
- 0+150=135+\mp@subsup{x}{N}{}*\mp@subsup{L}{N}{}
```


- \quad Step 2
- We know that:
- $135 \mathrm{~kg}=y_{1} * V_{1}$ and that $y_{1}=0.4$
- Therefore $135 \mathrm{~kg}=0.4 * V_{1}$
- And $V_{1}=\frac{135}{0.4}=337.5 \mathrm{~kg}$
- Step 3
- Solution Balance around entire battery
- $V_{N+1}+L_{0}=V_{1}+L_{N}$
- $50+500=337.5+L_{N}$
- $212.5=L_{N}$
- Step 4
- Determine mass fraction solute in exiting raffinate
- From Solute balance:
- $15=x_{N} * L_{N}$
- $\quad 15=x_{N} * 212.5$
- $0.071=x_{N}$

- Step 5
- Locate $\mathbf{L}_{\mathbf{N}}, \mathbf{L}_{0}, \mathbf{V}_{1}$, and $\mathbf{V}_{\mathrm{N}+1}$ on graph
- Draw lines $\overline{\boldsymbol{V}_{\mathbf{1}} \boldsymbol{L}_{\mathbf{0}}}$ and $\overline{\boldsymbol{V}_{N+1} \boldsymbol{L}_{\boldsymbol{N}}}$, their intersection is the Δ point.
- Step 6
- Anchor your rule on the delta point
- Mark off pairs of points for the operating line. Where the ruler crosses the Raffinate (left-hand) boundary of the phase boundary you will record \mathbf{x}_{c} as \mathbf{x}. Where the ruler crosses the right-hand (Extract) boundary record $\mathbf{x}_{\mathbf{c}}$ as \mathbf{y}.
- Choose enough points to generate a reasonably smooth operating curve.

- Operating Line

\mathbf{x}	\mathbf{y}
0.33	0.40
0.23	0.30
0.16	0.20
0.11	0.10
0.07	0.018

- \quad Step 7
- Generate Equilibrium Curve
- From data given in problem statement, take the \mathbf{x}_{c} value for Raffinate as \mathbf{x} and the \mathbf{x}_{c} value for the Extract as \mathbf{y}

$\mathbf{x}(\mathbf{x C})$	$\mathbf{y}(\mathbf{x C})$
0.22	0.42
0.17	0.39
0.12	0.30
0.06	0.18
0.04	0.12
0.02	0.06

- \quad Step 8
- Plot Equilibrium and Operating Curves
- Mark the point $\left(\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{V}_{\mathbf{1}}\right)=(\mathbf{0} . \mathbf{3 0}, \mathbf{0} .40)$
- Step off stages from $\left(\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{V}_{\mathbf{1}}\right)$ until you reach $\boldsymbol{L}_{\boldsymbol{N}}$ which is when $\boldsymbol{x}=\mathbf{0 . 0 7 1}$

This separation requires 3 stages
graph
McCabe-Thiele

2. ($\mathbf{5 0} \mathbf{~ p t s) ~ B e n z e n e ~ w i l l ~ b e ~ s t r i p p e d ~ f r o m ~ a ~ v a l u a b l e ~ o i l ~ b y ~ c o u n t e r c u r r e n t ~ c o n t a c t ~ w i t h ~ a i r ~ i n ~ a ~ t o w e r ~}$ packed with $1.0^{\prime \prime}$ plastic Pall rings. The contaminated oil (composition 96 mole $\%$ oil and 4 mole $\%$ benzene) will enter the tower at $2500 \mathrm{~mol} / \mathrm{hr}$ and 95% of the entering benzene is to be removed. The flow rate of the incoming pure air will be $40,000 \mathrm{~mol} / \mathrm{hr}$. The density and viscosity of the dilute oil/benzene solution are well approximated by the properties of pure oil. The vapor phase behaves ideally. The tower will operate isothermally at 25 C and at a total pressure of 1 atm. The tower diameter shall be determined to give $\Delta \mathrm{P} / \mathrm{ft}$ of packing equal to 80% that of $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}$. The equilibrium curve at these conditions is $\mathbf{y}=\mathbf{0 . 1 0} \mathbf{x}$. You may regard the operating line as being straight. Calculation of the flooding velocity should be based on flow rates at the top of the tower, where they are largest. The density of the vapor at the top of the column can be approximated as that of air.

Data:
Air:

$$
M W=28.9
$$

Benzene:

$$
\begin{aligned}
& \text { MW }=78.11 \\
& S C=1.76 \text { in air } \\
& S C=3500 \text { in oil }
\end{aligned}
$$

Oil:

$$
\begin{aligned}
& \text { MW }=106 \\
& \rho=0.83 \mathrm{~g} / \mathrm{cm}^{3} \\
& \nu=2.84 \mathrm{cSt} \\
& \mu=2.36 \mathrm{cP}
\end{aligned}
$$

Packing:
Table included in attachments

Gas Constant $=0.73024 \mathrm{ft}^{3} \mathrm{~atm} /(\mathrm{R} \mathrm{Ibmol}) \quad \mathrm{R}$ is degrees Rankine
Gas Constant $=82.05745 \mathrm{~cm}^{3} \mathrm{~atm} /(\mathrm{K} \mathrm{mol})$
2.2 pounds $=1 \mathrm{~kg}$
a. What is the required diameter for the tower? Use the following graph and the correlation $\Delta \mathrm{P}_{\text {flood }} / \mathrm{ft}=0.115 \mathrm{Fp}_{\mathrm{p}}^{0.7}$ inches water column per foot of packing
b. What height of packing is required? Base your solution on $y-y^{*}$. Use the correlations from lecture to determine H_{x} and H_{y}.

$$
H_{o y}=H_{y}+m \frac{V}{L} H_{x}
$$

c. What are N_{x} and N_{y} ?

Solution: 1 hour basis

Problem states that 95\% of the Benzene will be removed from the liquid stream:
Moles Benzene in the Liquid stream at the top, $a:=0.04 * 2500=100$ moles benzene
Moles oil (constant throughout the tower), 0.96 * $2500=2400$ moles oil
Moles Benzene in the liquid stream at the bottom, $b:=(1-0.95) * 100=5.0$ moles benezene
Mole fraction of Benzene in the liquid stream at the bottom:

$$
x_{b}=\frac{5.0}{5.0+2400}=0.00208
$$

Moles of benzene in the vapor stream at top:
100 moles entering with liquid at the top +0 moles entering with vapor at the bottom -5.0 moles exiting with liquid at the bottom $\boldsymbol{= 9 5 . 0} \mathbf{~ m o l e s ~ b e n z e n e ~ e x i t i n g ~ w i t h ~ v a p o r ~ a t ~ t h e ~ t o p ~}$

Mole fraction benzene in exiting vapor:

$$
y_{a}=\frac{95.0}{95.0+40,000}=0.00237
$$

Exam 02 Problem 02
1 hour basis
$L_{\text {tot }}=2500 \mathrm{~mol}$
$L_{c}=0.96 * 2500=2400 \mathrm{~mol}$ oil
$\mathrm{L}_{\mathrm{a}}=0.04 * 2500=100 \mathrm{~mol}$ benzene
$\mathrm{x}_{\mathrm{a}}=0.04$

$$
\begin{aligned}
& L_{c}=\text { same }=2400 \mathrm{~mol} \text { oil } \\
& L_{b}=5.0 \mathrm{~mol} \text { benzene } \\
& x_{b}=0.00208
\end{aligned}
$$

a. Now we use the flooding correlation given:

$$
\Delta P_{\text {flood }}=0.115 * F_{P}^{0.7}
$$

From the data table given we see that for $1^{\prime \prime}$ plastic Pall Rings $\mathbf{F}_{p}=\mathbf{5 5}$ and $\mathbf{f}_{p}=\mathbf{1 . 3 6}$

$$
\Delta P_{\text {flood }}=0.115 * 55^{0.7}=1.90 \frac{\mathrm{H} 20}{f t}
$$

We are instructed to work at 80% of the flooding pressure drop, therefore we will use $1.52^{\prime \prime}$ water per foot of packing. (We can use the $1.5^{\prime \prime}$ curve directly...)

To use the attached chart we must calculate $\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}$

As indicated in the problem statement, we will evaluate this at the top of the tower where flooding is the most likely to happen.

Although we do not know the cross-sectional are required to calculate $\mathbf{G}_{\mathbf{x}}$ or \mathbf{G}_{y}, the ratio of them is the same as the ratio of the mass flows of the liquid and vapor.

Mass flow of vapor:

$$
\begin{aligned}
& \text { At top }=40,000 \mathrm{~mol} \text { air } / \mathrm{hr} * 28.9 \mathrm{~g} / \mathrm{mol}+95.0 \mathrm{~mol} \text { benzene } / \mathrm{hr} * 78.11 \mathrm{~g} / \mathrm{mol}= \\
& 1163.4 \mathrm{~kg} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{y}}
\end{aligned}
$$

Mass flow of liquid:
At top $=2400 \mathrm{~mol} \mathrm{oil} / \mathrm{hr} * 106 \mathrm{~g} / \mathrm{mol}+100 \mathrm{~mol}$ benzene $/ \mathrm{hr} * 78.11 \mathrm{~g} / \mathrm{mol}=$ $262.2 \mathrm{~kg} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{x}}$

$$
\frac{G_{x}}{G_{y}}=\frac{S * G_{x}}{S * G_{y}}=\frac{262.1}{1163.4}=0.2254
$$

The density of the liquid can be approximated as the density of oil,

$$
\rho_{x}=0.83 \mathrm{~g} / \mathrm{cm}^{3}
$$

The density of the vapor can be obtained using the ideal gas law:

$$
\rho_{y}=\frac{M W P}{R T}=\frac{28.9 \frac{g}{\mathrm{~mol}} 1 \mathrm{~atm}}{82.05745 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}} 298.15 \mathrm{~K}}=0.00118 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Now:

$$
\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}=0.2254 \sqrt{\frac{0.00118}{0.83}}=0.0085
$$

From graph we can read from the line for line $1.5^{\prime \prime}$ water/ft that

$$
\begin{gathered}
C_{s} F_{p}^{0.5} v^{0.05}=2.25 \\
C_{s} 55^{0.5} 2.84^{0.05}=2.25 \\
C_{s}=0.288
\end{gathered}
$$

By definition:

$$
\begin{gathered}
C_{s}=u_{0} \sqrt{\frac{\rho_{y}}{\rho_{x}-\rho_{y}}} \\
0.288=u_{0} \sqrt{\frac{0.00118}{0.83-0.00118}}=0.0377 u_{0} \\
u_{0}=7.64 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

Calculate volumetric vapor flow:
$1163.4 \frac{\mathrm{~kg}}{\mathrm{hr}} * \frac{1000 \mathrm{~g}}{\mathrm{~kg}} * \frac{\mathrm{~cm}^{3}}{0.00118 \mathrm{~g}} * \frac{\mathrm{hr}}{3600 \mathrm{~s}} *\left(\frac{\mathrm{in}}{2.54 \mathrm{~cm}}\right)^{3} *\left(\frac{\mathrm{ft}}{12 \mathrm{in}}\right)^{3}=9.67 \frac{\mathrm{ft}}{\mathrm{s}}$

The required area is:

$$
\begin{gathered}
\text { Area }=\frac{\text { volumetric flow }}{\text { linear velocity }}=\frac{9.67 \frac{{f t^{3}}_{s}^{s}}{7.64 \mathrm{ft} / \mathrm{s}}=1.27 \mathrm{ft}^{2}=\frac{\pi D^{2}}{4}}{D=1.27 \mathrm{ft}}
\end{gathered}
$$

b) Now that we have the cross-sectional area we can calculate $\mathbf{G}_{\mathbf{x}}$ and $\mathbf{G}_{\mathbf{y}}$ independently:

Mass flow of vapor:

$$
1163.4 \mathrm{~kg} / \mathrm{hr} *(2.2 \mathrm{lb} / \mathrm{kg})=2559.5 \mathrm{lb} / \mathrm{hr}=\boldsymbol{S} * \boldsymbol{G}_{\boldsymbol{y}}
$$

Mass flow of liquid:

$$
\begin{array}{r}
262.1 \mathrm{~kg} / \mathrm{hr} *(2.2 \mathrm{lb} / \mathrm{kg})=576.6 \mathrm{lb} / \mathrm{hr}=S * \boldsymbol{G}_{\boldsymbol{x}} \\
G_{x}=\frac{576.6 \frac{l b}{\boldsymbol{h r}}}{1.27 \boldsymbol{f} t^{2}}=454.0 \frac{l b}{f t^{2} \boldsymbol{h r}} \\
G_{y}=\frac{2559.5 \frac{l b}{\boldsymbol{h r}}}{1.27 \boldsymbol{f t}^{2}}=2015.4 \frac{l b}{\boldsymbol{f t} \boldsymbol{h r}}
\end{array}
$$

We can now calculate the height of the transfer unit:

$$
H_{x}=0.9 f t\left(\frac{G_{x} / \mu}{1500 \frac{l b}{f t^{2} h r} /_{0.891 c P}}\right)^{0.3}\left(\frac{S_{c}}{381}\right)^{0.5} \frac{1}{f_{p}}
$$

$$
H_{x}=0.9 f t\left(\frac{454.0 \frac{l b}{f t^{2} h r} /_{2.36 c P}}{1500 \frac{l b}{f t^{2} h r} /_{0.891 c P}}\right)^{0.3}\left(\frac{3500}{381}\right)^{0.5} \frac{1}{1.36}=1.05 f t
$$

$$
H_{y}=1.4 f t\left(\frac{G_{y}}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{G_{x}}\right)^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}}
$$

$$
H_{y}=1.4 f t\left(\frac{2015.4}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{454.0}\right)^{0.4}\left(\frac{1.76}{0.66}\right)^{0.5} \frac{1}{1.36}=4.12 \mathrm{ft}
$$

Now we can calculate height of overall transfer unit:

$$
H_{o y}=H_{y}+m \frac{V}{L} * H_{x}
$$

From problem statement we know that $\mathrm{y}=0.10 \mathrm{x}$ and therefore $\mathrm{m}=0.10$
V and L are molar flow rates in this expression

$$
V / L=\frac{40,000+95}{2500}=16.04
$$

Now:

$$
H_{o y}=4.12 f t+0.10 * 16.04 * 1.05 f t=5.80 f t
$$

Now we will calculate the number of transfer units:

$$
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}}
$$

$$
\begin{aligned}
& y_{a}=0.00237 \\
& y_{b}=0 \\
& y_{a}^{*}=0.10 * x_{a}=0.10 * 0.04=0.004 \\
& y_{b}^{*}=0.10 * x_{b}=0.10 * 0.00208=0.000208 \\
& y_{b}-y_{a}=0-0.00237=-0.00237 \\
& y_{a}-y_{a}^{*}=0.00237-0.004=-0.00163 \\
& y_{b}-y_{b}^{*}=0-0.000208=-0.000208
\end{aligned}
$$

$$
\overline{\left(\boldsymbol{y}-\boldsymbol{y}^{*}\right)_{l \boldsymbol{m}}}=\frac{\left(y_{a}-y_{a}^{*}\right)-\left(y_{b}-y_{b}^{*}\right)}{\ln \frac{y_{a}-y_{a}^{*}}{y_{b}-y_{b}^{*}}}=\frac{-0.00163-(-0.000208)}{\ln \frac{-0.00163}{-0.000208}}=\frac{-0.00142}{2.05880}=-0.000690
$$

$$
N_{O y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}}=\frac{-0.00237}{-0.000690}=3.44
$$

The required height of the packing can be calculated as:

$$
Z_{t}=H_{o y} * N_{O y}=5.80 \mathrm{ft} * 3.44=20.0 \mathrm{ft}
$$

c) $Z_{t}=H_{x} * N_{x}=H_{y} * N_{y}=H_{O y} * N_{o y}=20 f t$
$N_{x}=19.0 \quad N_{y}=4.9$

Exam 02 Problem 01

Exam 02 Problem 1

TABLE 18.1
Characteristics of dumped tower packings ${ }^{12150.27}$

Type	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	Total area, $\mathrm{f}^{2} / \mathrm{ft}^{3}$	Porosity	Packing factors ${ }^{\text { }}$	
						$\boldsymbol{F}_{\boldsymbol{p}}$	f_{p}
Raschig rings	Ceramic	$\frac{1}{2}$	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.368
		11	43	37	0.73	95	1.0
		2^{2}	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		$1 \frac{1}{2}$	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		1	45	76	0.68	110	1.36%
		11	40	46	0.71	65	1.07\%
Intalox saddles	Ceramic	$\frac{1}{2}$	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64

