CE407 Exam 01

1. (50 points) A $100 \mathrm{~mol} / \mathrm{minute}$ feed of saturated liquid with a composition of 0.6 mole fraction toluene and 0.4 mole fraction ethylbenzene is fed to a fractionating column. There is a 95% recovery of toluene in the distillate and a 93\% recovery of the ethylbenzene in the bottom product. The column is equipped with a total condenser. The column is to operate with a reflux ratio $R=2.5$.
a. What are x_{D} and x_{B} ?
b. How many stages are required for this separation?
c. What is optimal feed stage?
d. What is the required rate of cooling at the condenser $\left(q_{c}\right)$ and the required rate of heating (q_{r}) to the reboiler? Give answers in kJ/hr
e. What are the required rates of cooling water and steam? Give answers in $\mathbf{k g} / \mathbf{h r}$

- Equilibrium data provided via the attached $T_{x y}$ diagram and Vapor Liquid Equilibrium Chart
- Define reference states such that the liquid enthalpy is zero for each pure component at 383.9 K.
- Heat capacity of Water $4.186 \mathrm{~kJ} / \mathrm{kg}$ C. Allow for a 10 C temperature rise in the cooling water.
- Steam: use 159 psig steam, which has a latent heat of evaporation of $1986 \mathrm{~kJ} / \mathrm{kg}$
- $H_{x}(T, x)=10,750 x+185 \mathrm{~T}-28 \mathrm{xT}-71,022 \mathrm{~J} / \mathrm{mol}$
- $H_{y}(\mathrm{~T}, \mathrm{y})=27,060 \mathrm{y}+169 \mathrm{~T}-65.3 \mathrm{yT}-28870 \mathrm{~J} / \mathrm{mol}$
- T is in K for these enthalpy formulas

Solution:

100 mole basis
Exam 1 Problem 1

a) Calculate mole fraction in the distillate and bottom streams:

$$
\begin{aligned}
& x_{D}=\frac{\text { mol Toluene in Distillate }}{\text { total mol Distillate }}=\frac{57.0}{59.8}=0.953 \\
& x_{B}=\frac{\text { mol Toluene in Bottoms }}{\text { total mol Bottoms }}=\frac{3.0}{40.2}=0.075
\end{aligned}
$$

b) R operating line is given by the following formula:

$$
y_{n+1}=\frac{x_{D}}{R+1}+x_{n} \frac{R}{R+1}
$$

This can be easily plotted by placing a point at $\left(x_{D}, x_{D}\right)=(0.953 .0 .953)$
And drawing a line to the intercept $\left(\mathbf{0}, \frac{x_{D}}{R+1}\right)=(\mathbf{0}, \mathbf{0} .273)$
The S operating line can be drawn in easily by placing a point at $\left(x_{B}, x_{B}\right)=$ (0.075. 0.075) and connecting to the intersection of the feed line (vertical line at $\mathrm{x}=\mathrm{x}_{\mathrm{F}}=$ 0.6) and the R operating line.

Draw in the steps and determine that there are 11 stages + Reboiler

c) The feed stage is the one that crosses the feed line and is stage 6
d) Required cooling and heating calculation:

$$
\begin{gathered}
-q_{c}=D(1+R)\left(H_{x, 0}-H_{y, 1}\right) \\
q_{r}-q_{c}=D H_{D}+B H_{B}-F H_{F}
\end{gathered}
$$

From preliminary calculations we know that:
$\mathrm{F}=100 \mathrm{~mol} / \mathrm{min}$
$\mathrm{D}=59.8 \mathrm{~mol} / \mathrm{min}$
$B=40.2 \mathrm{~mol} / \mathrm{min}$

We need to determine the temperature of the Feed, Distillate, and Bottoms streams in order to evaluate the enthalpies of these streams. This information can be obtained from the T_{xy} diagram:

Temperature of Distillate ($D \& x_{0}$) is that of saturated liquid at $x=0.953$ and is 385 K Temperature of Vapor entering condenser (y_{1}) is that of saturated vapor at $\mathrm{y}=0.953$ and is 386 K
Temperature of Feed (F) is that of saturated liquid at $x=0.6$ and is 392.5 K
Temperature of Bottoms (B) is that of saturated liquid at $x=0.075$ and is 407 K
Txy Toluene - Ethylbenzene

From problem statement:

$$
\begin{aligned}
& H_{x}(T, x)=10,750 x+185 \mathrm{~T}-28 x T-71,022 \mathrm{~J} / \mathrm{mol} \\
& H_{y}(T, y)=27,060 y+169 \mathrm{~T}-65.3 \mathrm{yT}-28870 \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

Evaluate Enthalpies:

$$
\begin{aligned}
& H_{x, 0}(T, x)=H_{D}(T, x)=H_{x}(385 K, 0.953)=10,750 * 0.953+185 * 385-28 * 0.953 * 385 \\
& -71,022 \mathrm{~J} / \mathrm{mol}=174.4 \mathrm{~J} / \mathrm{mol} \\
& \mathrm{H}_{\mathrm{y}, 1}(\mathrm{~T}, \mathrm{y})=\mathrm{H}_{\mathrm{y}, 1}(386 \mathrm{~K}, 0.953)=27,060 * 0.953+169 * 386-65.3 * 0.953 * 386-28870 \mathrm{~J} / \mathrm{mol} \\
& =38,131.1 \mathrm{~J} / \mathrm{mol} \\
& H_{B}(T, x)=H_{x}(407,0.075)=10,750 * 0.075+185 * 407-28 * 0.075 * 407-71,022 \mathrm{~J} / \mathrm{mol} \\
& =4224.6 \mathrm{~J} / \mathrm{mol} \\
& H_{F}(T, x)=H_{x}(392.5,0.6)=10,750 * 0.6+185 * 392.5-28 * 0.6 * 392.5-71,022 \mathrm{~J} / \mathrm{mol} \\
& =1446.5 \mathrm{~J} / \mathrm{mol} \\
& -q_{c}=D(1+R)\left(H_{x, 0}-H_{y, 1}\right) \\
& -q_{c}=59.8 \frac{\mathrm{~mol}}{\min } * \frac{60 \mathrm{~min}}{\mathrm{hr}} *(1+2.5) *(174.4-38,131.1) \frac{\mathrm{J}}{\mathrm{~mol}} \\
& q_{c}=4.767 * 10^{8} \frac{\mathrm{~J}}{\mathrm{hr}}=4.767 * 10^{5} \frac{\mathrm{~kJ}}{\mathrm{hr}} \\
& q_{r}-q_{c}=D H_{D}+B H_{B}-F H_{F} \\
& q_{r}-4.766 * 10^{8} \frac{k J}{h r} \\
& =\left(59.8 * \frac{\mathrm{~mol}}{\mathrm{~min}} * 174.4+40.2 \frac{\mathrm{~mol}}{\mathrm{~min}} * 4224.6 \frac{\mathrm{~J}}{\mathrm{~mol}}-100 \frac{\mathrm{~mol}}{\mathrm{~min}}\right. \\
& \left.* 1446.5 \frac{\mathrm{~J}}{\mathrm{~mol}}\right) * \frac{60 \mathrm{~min}}{\mathrm{hr}} \\
& q_{r}=4.788 * 10^{8} \frac{\mathrm{~J}}{\mathrm{hr}}=4.788 * 10^{5} \frac{\mathrm{~kJ}}{\mathrm{hr}}
\end{aligned}
$$

e) Cooling water requirement
$C_{p, \text { water }}=4186.8 \mathrm{~J} /(\mathrm{kg} \mathrm{C})$
$\mathrm{q}_{\mathrm{c}}=$ (mass flow cooling water) ${ }^{*} \mathrm{C}_{\mathrm{p}, \text { water }} *\left(\mathrm{~T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)$
$4.767 * 10^{8} \mathrm{~J} / \mathrm{hr}=\mathrm{m}^{*} 4186.8 \mathrm{~J} /(\mathrm{kg} \mathrm{C}) * 10 \mathrm{C}$
$\mathrm{m}_{\text {cooling water }}=11,386 \mathrm{~kg} / \mathrm{hr}$

Steam Requirement
$\Delta \mathrm{H}^{\text {vap }}{ }_{\text {steam }}=1986 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{r}}=(\text { mass flow steam }) * \Delta \mathrm{H}^{\text {vap }_{\text {steam }}} \\
& 4.788 * 10^{5} \mathrm{~kJ} / \mathrm{hr}=\mathbf{m}^{*} 1986 \mathrm{~kJ} / \mathrm{kg} \\
& \mathbf{m}_{\text {steam }}=\mathbf{2 4 1 . 1} \mathbf{~ k g} / \mathbf{h r}
\end{aligned}
$$

2. (35 points) A $200 \mathrm{~mol} / \mathrm{hr}$ stream of contaminated air (composition 96 mole percent air, 4 mole percent toxin) must be cleaned up by countercurrent contact with water in an absorption tower operating isothermally at 25 C and atmospheric pressure. The exiting air should have toxin mole fraction no greater than 0.003 . Entering water is pure.
a. What is the minimum flow rate of water required to achieve the desired cleanup, corresponding to an infinite number of stages? Hint: Curvature of equilibrium line will lead to first contact occurring at the " b " (or "dirty") end of the tower.
b. If the entering water flow rate is 20.0 mole/hr, how many ideal stages are required? Calculate at least three points on the operating curve in order to capture its shape.

As usual, you may neglect evaporation of water as well as dissolution of air in the liquid. The equilibrium curve is provided.

Solution:

At a end of tower we are given that:

$$
y_{a}=0.003=\frac{V_{a} \text { mol toxin }}{V_{a} \text { mol toxin }+V_{c} \text { mol air }}
$$

The moles of air exiting will be the same as the moles entering:

$$
\text { mol air }=0.96 * 200 \mathrm{~mol} \text { total }=192 \mathrm{~mol} \text { air }
$$

Therefore:

$$
\begin{gathered}
y_{a}=0.003=\frac{V_{a} \text { mol toxin }}{V_{a} \text { mol toxin }+192} \\
V_{a} \text { mol toxin }=0.578 \mathrm{~mol}
\end{gathered}
$$

Mole balance on toxin:

$$
\begin{gathered}
\text { Entering }=\text { Exiting } \\
200 * 0.04+0=0.578+L_{b}
\end{gathered}
$$

$$
L_{b}=7.422 \mathrm{~mol}
$$

Exam 01 Problem 02

1 hour basis

Calculate Minimum Water Flow:

Problem states that we can look for first contact at the " b " end, therefore at minimum water flow the exiting liquid will be in equilibrium with the entering gas:

$$
y_{b}=y^{*}\left(x_{b, \min }\right)
$$

or

$$
x_{b, \min }=x^{*}\left(y_{b}\right)
$$

From the equilibrium data on the graph:

$$
y_{b}=0.04 \rightarrow x_{b, \min }=0.34
$$

Problem 02

a) Minimum Liquid Flow

$$
L_{c, \min }=14.41 \mathrm{~mol} / \mathrm{hr}
$$

b) For a liquid flow of

$$
L_{c}=20 \mathrm{~mol}
$$

$$
x_{b}=\frac{L_{b} \text { mol toxin }}{L_{b} m o l ~ t o x i n ~}+L_{c, \min } \quad=\frac{7.422 \mathrm{~mol} / \mathrm{hr}}{7.422 \frac{\mathrm{~mol}}{\mathrm{hr}}+20 \frac{\mathrm{~mol}}{\mathrm{hr}}}=0.27
$$

Calculate points on the operating line:

$$
y_{n+1}=1-\left[\frac{L_{c}}{V_{c}}\left(\frac{1}{1-x_{n}}-\frac{1}{1-x_{a}}\right)+\frac{1}{1-y_{a}}\right]^{-1}
$$

$L_{c}=20$
$V_{c}=192$
$x_{a}=0$
$y_{a}=0.003$

$$
\begin{gathered}
y_{n+1}=1-\left[\frac{20}{192}\left(\frac{1}{1-x_{n}}-\frac{1}{1-0}\right)+\frac{1}{1-0.003}\right]^{-1} \\
y_{n+1}=1-\left[0.1042\left(\frac{1}{1-x_{n}}-1\right)+1.003\right]^{-1}
\end{gathered}
$$

Operating Line	
$\mathbf{x n}$	$\mathbf{y n + 1}$
0	0.003
0.1	0.014373
0.15	0.020943
0.2	0.028231
0.25	0.036359
0.3	0.045484
0.35	0.055801
0.4	0.067559

We will now step off the stages starting on the operating line at the "a" end:
$\left(\boldsymbol{x}_{\boldsymbol{a}}, \boldsymbol{y}_{\boldsymbol{a}}\right)=(\mathbf{0}, \mathbf{0} .003)$ and step off to the point $\left(\boldsymbol{x}_{\boldsymbol{b}}, \boldsymbol{y}_{\boldsymbol{b}}\right)=(\mathbf{0} .27, \mathbf{0} .04)$

We see that it will require about 4.75 stages - round to 5 stages

3. (15 points) A ternary mixture with the following composition is to be split into separate streams of (relatively) pure components. If each column is capable of 98% recovery of the light key in the distillate and 98% recovery of the heavy key in the bottoms, design a column sequence and calculate the final purity of each component.

Component	Mole Fraction
C3	0.25
C4	0.30
C8	0.45

100 mole basis
Problem 3 Column 1

100 mole basis
Problem 3 Column 2

C_{3} product has mole fraction $x=0.976$
C_{4} product has mole fraction $x=0.954$
C_{8} product has mole fraction $\mathrm{x}=0.987$

Txy Toluene - Ethylbenzene

Problem 02

