Problem 1

General $\quad x_{F}=0.65, x_{B}=0.97, x_{B}=0.025$
Feed lore pane thous pot ($x_{\text {F }} x_{5}$) $=(0.65,0.65$) and is howzondop (slype =0) became feed ir satiated vapor
(Not required: From graph on p. $(\partial), \quad x_{D} /\left(R_{\text {min }}+1\right)=0.50 \Rightarrow$

$$
R_{\text {min }}=0.94
$$

Pant (a): R-op. lime parer throsk pt $\left(x_{0}, x_{0}\right)=(0.970 .97)$ and has infencept $x_{D} /(R+1)=0.30$

Sop. ene panes through pt. $\left(x_{3}, x_{6}\right)=(0.025,0.021)$ and po of indervecing of $R_{x y} 4$ deer lis.

Draw edectivi equal. curve $3 / 4$ of the way up from op. emos th eque. curve because $\eta_{m}=0.75$. Stages: Do not un elf equil curve foe 15) step, which represents pandiól conderven. Count steps thereafter, t do not use ell equal curve forlant rep, perhaps which represent i requiter. From srapt on p. P) need 7 to be
sure $\frac{6 \text { stages }}{\frac{6}{\text { lase } \# 3}}$ in the column itself. Feed stage is sure $\frac{\text { sage \# } 3 \text {. } 0 \text { stages } . ~}{\text { s la }}$

Pant (b): $D=F\left(\frac{x_{F}-x_{B}}{x_{D}-x_{B}}\right)=\left(\infty 0 \frac{\mathrm{~mol}}{\mathrm{~h}}\right)\left(\frac{0.65-0.025}{0.97-0.021}\right)$

$$
\begin{aligned}
& =50.9 \mathrm{~mol} / \mathrm{h} \\
& R=\frac{L}{D} \Rightarrow L=R D=(0.23)(52.9)=110.0 \mathrm{~mol} / \mathrm{h} \\
& V=C+D=170.9 \mathrm{~mol} / \mathrm{h} \\
& V=\bar{V}+(1-q) F \Rightarrow \bar{V}=V-(1-q) F=V-F=90.9 \mathrm{~mol} / \mathrm{h} \\
& R=L / D \\
& L=L+g F
\end{aligned}
$$

(Get my pairs from a few horizontal lines drawn in Tx phase diagram)

carting this box is absompety forbidden
(Get my pairs from a few horizontal lines drawn in Ty phase diagram)
effective caul. curve

courting this box is absumpety forbidden

Pant(c): Enthaepy formula:

Vapor enteriry $P C: \quad x_{D}=y^{\prime}$

$$
\begin{aligned}
y^{\prime} & =x_{0}=0.97 \\
x_{0} & =x \text { in equl. } \\
& =0.85=0.97
\end{aligned}
$$

$$
y_{1}=[R /(R+1)] x_{0}+x_{0} /(R+1)=0.887 \text { (or look on op. }
$$ diagram $(p, 3)$) and see from por. (x_{0} / y_{1}) that $y_{1} \approx 0.89$).

Cebo, from Txy phone diagram, $T_{y} \approx \partial 夕 夕^{\circ} \mathrm{C}$.
Enthoepy: W.th $y=0.007$ and $T=180^{\circ} \mathrm{C}$, colculate

$$
H_{y, 1}=31,065 \mathrm{~J} / \mathrm{mol}
$$

Problem 2
Gerenal: Equal relationsi $y=(k / p)_{x}=(282 / 760)_{x}$

$$
=0.3711 x
$$

Pantlo. Dilute rolution \Rightarrow op. lnre \approx strasht lave w/ slope $L / V * 9 / 18=$ O.S. Slipe of u. live $>$ slype of equel. curve. $\therefore 1^{\prime \prime}$ cenfal as $N \rightarrow \infty$ cecury (a) $a-$ end y towen.

$$
\begin{aligned}
& \left(\mathrm{H}_{y}\right)=0+29,300+90(T-77)
\end{aligned}
$$

$$
\begin{aligned}
& =34,285+260(T-77) \\
& H_{y}=y\left(H_{y}\right)_{1}+(1-y)\left(H_{y}\right)_{2} \\
& =34,205-4985 y+(260-170 y)(T-77)
\end{aligned}
$$

So: $y_{a} / /_{N-\infty}=(0.3711) x_{a}=0.001856\left[\left(x_{a}, y_{a} / N \rightarrow \infty\right)\right.$ salifices equel relation. Mrateriol balance for $N \rightarrow \infty$ wirke out ar follow:

$$
\begin{aligned}
& U_{c}=18.0 \text { mol ari } \\
& \text { (} \left.V_{\text {Meor }}\right)_{i}=? \text { ? } \\
& y_{a}=0.001856 \\
& L_{c}=8.955 \text { mol water } \\
& \longrightarrow\left(L_{\text {meor }}\right)_{b}=\text { ? } \\
& x_{t}=\text { ? } \\
& V_{c}=18.0 \mathrm{~mol} \mathrm{am} \\
& V_{\text {Meor }}{ }_{b}=0 \\
& y_{8}=0 \\
& 0.001886=\frac{\left(V_{\text {MeOH }}\right)_{a}}{18.0+\left(U_{\text {MeOM }}\right)_{a}} \Rightarrow\left(U_{\text {MeOM }}\right)_{a}=0.03347 \text { mol MeOH } \\
& \text { Then }\left(L_{\text {MeOH }}\right)_{b}=0.045 \mathrm{~mol}+0-\left(\text { VMeOM }_{\mathrm{B}}=0.01113 \mathrm{molmeOH}\right. \\
& \text { and } x_{b}=\frac{0.0453}{0.01153+8.955}=0.00129 \leftarrow \text { This is } x_{b} /_{N \rightarrow \infty}
\end{aligned}
$$

Pout (b): Material bolances etc.

Than $\left(U_{\text {meart }}\right)_{a}=0.045 \mathrm{~mol}+0-0.0008956 \mathrm{~mol}=0.04410 \mathrm{~mol}$ and $y_{a}=\frac{0.04410}{36.0+0.04410}=0.001224$

Kremien eq:: $\quad y_{a}{ }^{*}=y^{*}\left(x_{a}\right)=(0.3711)(0.05)=0.001856$

$$
=7.16 \text { stoges } \Rightarrow 8 \text { stager }
$$

Seltanate Krempen cq: $\quad x_{a}^{*}=x^{*}\left(y_{a}\right)=\frac{y_{*}}{0.3711}=0.003298$

$$
\begin{aligned}
N & \left.=\frac{\log \left(\frac{x_{a}-x_{a}+2}{x_{b}-x_{b}^{2}}\right)}{\log \left(\frac{x_{a}-x_{b}}{x_{a}^{*}-x_{b}^{2}}\right)}=\frac{\log \left(\frac{0.005-0.003298}{0.0001-0}\right)}{\log \left(\frac{0.05}{0.011}-0.001\right.}\right) \\
& =7.16 \text { Slajes (sarre answa) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.y_{8}^{*}=y^{*} / x_{0}\right)=(0.3711)(0.0001)=0.00003711 \\
& N=\frac{\log \left(\frac{y_{b}-y_{b}^{*}}{y_{a}-y_{a}{ }^{*}}\right)}{\log \left(\frac{y_{b}-y_{a}}{y_{6}^{6}-y_{a}^{*}}\right)}=\frac{\log \left(\frac{0-0.00003711}{0.001224-0.001856}\right)}{\log \left(\frac{0-0.001224}{0.00003711-0.001856}\right)}
\end{aligned}
$$

