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Scenario:  
Your team is part of the Engineering Research Division of CBE Inc.  You are being asked to investigate 
a method for measuring the thermal conductivity of solid materials. You will describe the principles 
behind the method and compare the thermal conductivities of several materials determined using the 
technique to literature values. 
 
Problem:    
Thermal conductivity is an intensive physical property of a material that relates the heat flow through the 
material per unit area to temperature gradient across the material. The thermal conductivity of a material 
is basically a measure of its ability to conduct heat.  In a wide variety of applications ranging from 
building insulation to electronics, it is important to determine a material’s thermal conductivity.  Typical 
methods of thermal conductivity measurement can be categorized as either steady-state or non-steady-
state.  In steady-state techniques,  equilibrium heat flux and temperature gradient are measured.  In non-
steady-state techniques, a variable heat flux is produced and the time-variant temperature gradient is 
measured. The method you are asked to investigate involves the transient heating of spherical shaped 
samples. 
 
System:  
Solid spheres of known and unknown thermal conductivity are available.  The spheres are first cooled 
to ice temperature and then immersed in a circulating water bath whose temperature is maintained at a 
uniform (but higher) temperature. 
 
Measurements: 
A thermocouple located at the center of each spherical body measures the temperature at that point.  
This temperature is recorded as a function of time using a data acquisition system controlled by 
LabView software.  Bring a floppy disk for this lab. 
 
Theory: 
The thermal conductivity of a material can be determined by comparing the measured temperature to 
that predicted from a mathematical analysis of heat conduction in the solid body.  The thermal 
conductivity is a parameter in the theory that can be varied to match the experimental temperature 
profile. 
 
Fourier’s Law of Heat Conduction states that the heat flux by conduction is proportional to the 
temperature gradient. (Note that q, heat flux, has units of heat flow per unit area) 
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Tkq ∇−=        (1) 

 where the proportionality constant, k, is the thermal conductivity . 
 
For the problem of heat conduction in a sphere of diameter R, application of Fourier's Law of Heat 
Conduction to the unsteady flow of heat from the object to a surrounding fluid produces the energy 
balance 
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where 
T = temperature of the solid at radius r and time t 
t = time 
r = radial distance from the center 
α = k/(ρCp) = thermal diffusivity of the solid 
k = thermal conductivity of the solid 
ρ = density of the solid 
Cp = heat capacity of the solid 
R = radius of the sphere. 

 
For a sphere initially at a uniform temperature, To, suddenly immersed into a bath of constant, 
uniform temperature, T∞, the initial and boundary conditions for this partial differential equation are: 

T = To for t = 0 and 0 = r = R (3) 
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where h is the heat transfer coefficient for the transfer of heat from the solid to the fluid. This coefficient 
must be determined experimentally.  (What parameters of the system would affect h?) 
 
The solution to the above partial differential equation (eqn. (2)) for the temperature at the center of the 
sphere with the initial and boundary conditions given in equations (3),(4), and (5) can be written as 
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where 

βn = nth root of the equation 
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Bi = 
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k

= Biot number (dimensionless)  

The solution expressed in Eqn.(6) can be written in terms of dimensionless variables as: 
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= dimensionless time 

η = r/R = dimensionless radial position 

and again  

βn = nth root of the equation 
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More details about the solution of the PDE are given in Appendix 1.  
 
Expression (8) has been evaluated and plotted by several authors.  Similar solutions for other shapes, 
e.g., cylinders and flat plates, as well as the solution for a cylinder of finite length can also be found in the 
literature.  Graphical forms of the solutions to transient heat conduction problems are called Heisler 
charts.  In this experiment, you can evaluate Eqn.(8) using a given Excel spreadsheet or you may choose 
to evaluate the expression using Maple instead. 
 
Experimental work:  
Your team will record the thermal history of several samples (initially in thermal equilibrium with ice), 
immersed in a circulatory water bath that is held at constant temperature. You will monitor the 
temperature using a thermocouple embedded in the center of the sample.  This thermocouple, as well as 
thermocouples located in the ice bath, and in the circulatory water bath are connected to a data 
acquisition board controlled using LabView software.  A basic LabView program for recording the 
temperature measurements from these thermocouples is provided. It is described in more detail in 
Appendix 3. Bring a floppy disk for this lab.  Record in your lab notebook the dimensions of the 
spheres and the names of the files containing the recorded data. 
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The unknown heat transfer coefficient, h, must first be determined by recording the thermal history of a 
sample of known shape, thermal conductivity, density and heat capacity.  We postulate that this 
coefficient is independent of the material; it depends only on the shape of the sample and the conditions 
prevailing in the water bath. Thus, once h is known for the system, the thermal conductivity of any solid 
can be determined. 
 
 
 
Calculations 
1. The aluminum alloy (Type 6262-T9) sphere is to be used to determine the heat transfer 

coefficient, h.  This can be done by evaluating the solution (Equation 8) numerically using the 
known conductivity.  The heat transfer coefficient , h, can then be varied to fit the experimental 
data for the aluminum sphere.  As a starting point in your iteration, use an estimate of h 
determined from a “lumped parameter” solution (as discussed in CE308).  Use the full 
temperature vs. time curve to fit the best possible value of the Biot modulus to match all of the 
data.  The heat transfer coefficient can then be calculated from the Biot modulus.  The error in θ 
should be calculated by propogation of errors from your experimental data, and compared 
(after making the appropriate corrections) to the sum of squares error resulting from your curve 
fit. 

 
2. The remaining unknown materials are believed to be stainless steel (Type 304), "free cutting" 

brass, and poly-methyl-methacrylate (Lucite® or Plexiglas®).  Once the heat transfer 
coefficient is determined for the system, the unknown conductivities can be determined by fitting 
the numerical solution to the experimental data for the other spheres  by varying the 
conductivity, k, assuming that h remains the same.  

 
3. An Excel file will be given to you that you can use to solve for the heat transfer coefficient of Al, 

and for the thermal conductivity of the other materials.  For a description of the calculation 
method, see Appendix 4. 

 
4. Plot your experimental data in terms of unaccomplished temperature change versus 

dimensionless time along with the values calculated from the mathematical model.   
 
Pre-lab Assignment: 
Write a detailed operating procedure. Be prepared to discuss the calculations/programming 
needed (Understand what the Excel spreadsheet does!).  Determine what the “sum of square 
errors” represents.  Also, for error determination in the experimental values for theta, be prepared to 
discuss how you will estimate the error in Tcenter. 
 
Some Ideas to Consider in the Report 
 

1. How do the measured values for k compare with those given in the literature?  Remember 
to cite sources for literature values. 
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2. Do h and k appear to change with unaccomplished temperature?  In other words, does the 

fit of the mathematical model vary over the course of the experiment? 
 

3. How did you determine the "best" value for h and k from your work? 
 

4. What are some of the sources of error (both systematic and random) in your work?  How 
can you quantify these sources, and what is their effect on your final results? 

 
5. What is the error that you determined for θ using propagation of errors?  Did it change for 

the different materials?  How does it compare to the sum of square errors, (SSQ) that you 
determined for your best fits?  (You need to make some calculations to the SSQ errors or 
to theta to make a comparison.)  
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 Appendix 1:  Analysis of transient conduction in a sphere: 
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This can be made dimensionless using 
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Substituting these into the equations and boundary conditions gives 
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A general solution that includes this case is given on pages 126-127 of Carslaw and Jaeger.  The 
solution given there is 
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using this substitution and the trig identity for csc2(βn) this can be rearranged to give 
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Plugging this into the expression for v gives 
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Evaluating the integral gives 
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We are interested in the temperature at the center of the sphere, η = 0.  So, we take the appropriate 
limit of the above expression as η goes to zero to get 
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 Appendix 2:  Evaluation of Infinite Series Solution in Excel® 
 
An Excel Program will be available on the website to evaluate the infinite series solution.  Use the 
correct worksheet for the geometry of the object you are solving for (Use only the worksheet for 
spheres).   
 
Put in your time and temperature data in the first two columns.  The worksheet can be expanded to fit 
additional data points.  Tau and theta will automatically be calculated. 
 
 

 
For the Al sphere: 

1. Put in k for Al. 
2. Guess a value for h. 
3. Run the macro to obtain the roots of Eqn (7) ( (Ctrl+Shift+r to run macro) 
4. Check the solution to make sure “zero” is near zero, and the roots fall between 0 and pi, pi and 

2pi, 2pi and 3 pi, etc. Make sure the first root is not close to zero. If it is enter a number 
close to one and run the macro again. 

5. Look at the sum of squares error.  (bottom of error^2 column) 
6. Repeat steps 1-3 until you have minimized sum of squares error. 
7. Now, use this h for other cylinders to determine k. 
  

For other spheres: 
1. Put in h you determined for Al. 
2. Guess a value for k. 
3. Run the macro to obtain the roots of Eqn (7) (Ctrl+Shift+r) 
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4. Check the solution to make sure “zero” is near zero, and the roots fall between 0 and pi, pi and 
2pi, 2pi and 3 pi, etc. Make sure the first root is not close to zero. If it is enter a number 
close to one and run the macro again. 

5. Look at the sum of squares error.  (bottom of error^2 column) 
 
6. Repeat steps 1-3 until you have minimized sum of squares error. 
7. Now, you have k for your “unknown” sphere. 
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Appendix 5:  LabView program for recording temperatures 
 
The front panel of the LabView virtual instrument (data acquisition program) for this experiment is 
shown below: 
 

 
The controls listed under system settings are items that you enter by typing numbers in the boxes or by 
clicking on the 'start timer' button.  You enter a time to wait between temperature readings (the minimum 
is around 5 milliseconds) and a number of temperature readings to average before displaying the result.  
The time between data points that are displayed is the product of the waiting time and the number of 
points.  For example, if you wait 10 milliseconds between readings and average 100 readings, you will 
record one data point about every 1000 milliseconds, or 1 data point per second.  The four indicators 
under system readings show the temperatures in the water bath, at the center of the object that is 
connected to the data acquisition box, and in the ice bath.  The time elapsed since the 'start timer' button 
was pushed is also displayed.  These will be displayed continuously while the program is running, but 
will not be saved for output to a file until you press the 'start timer' button.  After you click that button, it 
will change to a 'stop timer' button, and each time the readings are displayed, they are also added to a 
table of results that is recorded in a text file when you push the 'stop timer' button.  So, to record the 
temperatures as a function of time, you provide values for the milliseconds to wait between readings and 
for the number of readings to average.  Then, as you put the object into the water bath, you click the 
'start timer' button.  Data will then be collected at the specified rate.  When the temperature at the center 
of the object reaches the hot water bath temperature, then you click the 'stop timer' button.  You will 
then be asked for a name for the data file to which the results will be recorded.  The data will be saved, 
and you can then open that file in Excel or any other program that can read a tab delimited text file. 
 
Now that we have seen how to use the virtual instrument, we will try to understand the diagram that was 
used to build this virtual instrument.  It is shown on the following page.  We see that this program 
contains three levels of loops.  The outer 'while loop' is an infinite loop.  That is, it will keep looping 
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forever, or until the stop button on the front panel is pushed.  The conditional for continuing the loop is 
connected to the boolean constant 'false' through the boolean operator 'not'.  This is equivalent to saying 
(do while (not.false) ...) The 'not false' always produces the result 'true', so the condition for repeating 
the loop is always satisfied.  Infinite loops are generally bad programming practice, and this structure 
might be one of the first things to eliminate if one was to try to improve this program.   
 
Within the infinite while loop is another while loop.   Wired to its conditional for continuing the loop is 

the boolean control from the front screen that is labeled 'start timer' or 'stop timer'.  Clicking on that 
control toggles this input between 'true' and 'false'.  The default state for this control is 'false', and in this 
state the button on the front panel displays 'start timer'.  In this state, the while loop thus executes once, 
then exits without repeating, since its conditional for repeating is false.  When the control button is 
clicked it is set to 'true', and it displays 'stop timer' on the button.  The while loop is then repeated until 
the button is clicked again, setting it back to its 'false' state. 
 
Within the inner 'while' loop is a 'for loop'.  It is within this loop that the data acquisition actually takes 
place.  The number of times to repeat this loop before exiting is given by the digital control that is 
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labeled 'Number of Readings to Average'.  It is wired to the input that specifies the number of times to 
go through the loop.  Each time through the loop, the program reads the three temperatures from the 
board, and then waits a specified number of milliseconds.  To read a temperature, the program uses the 
'AI ONE PT' vi to get a voltage reading from the data acquisition board to which the thermocouples are 
connected.  The inputs to this vi, from top to bottom, are the device number to read from, the channel of 
that device to read from, the maximum value expected and the minimum value expected.  Thus, the top 
'AI ONE PT' shown above reads channel 1 of device 1, and expects a reading of between -0.0001 and 
0.0001 volts.  The thermocouple that is placed in the hot water bath is physically connected to the input 
terminals of this channel.  Likewise, the next 'AI ONE PT' shown reads channel 0 of device 1, and 
expects a reading between 0.00 and 0.50 volts.  Channel zero is connected to an integrated circuit 
temperature sensor on the data acquisition board.  This temperature sensor provides the known 
temperature that is required for us to use 'cold junction compensation' to obtain a temperature from the 
thermocouple voltage.  This is discussed in more detail in the lecture on thermocouples.  The voltage 
reading from each of the three thermocouples is sent to a vi called 'THERMOLINEAR'.  This is a vi, 
provided with LabView, that converts a thermocouple voltage to a temperature.  As inputs it requires 
the thermocouple voltage, a voltage from the temperature sensor that is being used for cold junction 
compensation, a specification of the thermocouple type, and a specification of the type of temperature 
sensor being used for cold junction compensation.  The voltage inputs are wired to the appropriate 
outputs of the 'AI ONE PT' vi's.  The other inputs are specified as constants - we are using type T 
thermocouples for the temperatures we want, and an IC Sensor for the reference junction temperature.  
The outputs from the 'THERMOLINEAR' vi's are the measured temperatures.  These are sent out of 
the for loop.  You will notice that when the wires leave the loop, they become thicker.  This is because 
the loop has 'auto-indexing' enabled.  This means that it takes the value at each iteration and adds it to a 
list (a one-dimensional matrix, or vector), so that when the loop finishes, the output is a list of numbers 
whose size corresponds to the number of iterations that were completed.  Each list of measured 
temperatures goes to a 'MEAN' vi.  This is another vi that is provided with LabView.  This vi simply 
takes the average of the list of numbers.  Its output is therefore a single number, as indicated by the 
narrow line leaving it.  The outputs from the 'MEAN' vi's are sent to the digital indicators that are shown 
on the front panel.  They are also sent out of the 'while' loop for later storage in the data file.  After each 
completion of the 'for' loop, the time is read, and the time before entering the 'while' loop is subtracted 
from it.  The result is the time elapsed since the 'while' loop was entered (the time elapsed since the 'start 
timer' button was clicked).  This is also displayed on the screen and sent out of the while loop for later 
storage in the data file.  Also within the while loop, there is a logical check to see if the iteration number 
is greater than 1.  This is used to decide whether an output file should be written.  If the while loop only 
executed once, then the 'start timer' button has not been pushed, and we do not want to record a data 
file.  If the while loop has executed multiple times, then we have lists of data to record.   
 
When the data leaves the inner while loop, auto-indexing is used again.  The heavy lines leaving the loop 
indicate that we have lists of numbers (arrays of dimension 1).  These are the times and the temperatures 
read at each time.  They enter a 'case' structure.  The 'true' case is shown above.  The 'false' case is 
empty (if the control variable is false, nothing is done).  The control input of the case structure is 
connected to the output of the check on whether the number of times through the inner while loop was 
greater than one.  If it was greater than one, then the program will execute the 'true' case, if not, then it 
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will execute the 'false' case, which does nothing.  The 'true' case writes the lists of times and 
temperatures to a file.  The first vi that the data enter is the 'build array' vi. It simply takes the one-
dimensional arrays of numbers and puts them into a 2-dimensional array.  This 2-dimensional array 
(indicated by a double line) is sent to the 'write to spreadsheet' vi.  This vi opens a dialog to ask the user 
for a name for the file to write, and then writes the 2-dimensional array of numbers to the file, separated 
with tabs and carriage returns.  The resulting file can be read by Excel and many other programs. 
 
This discussion is intended to give you some idea how the data acquisition program (or virtual 
instrument) works.  To understand it in detail, you will have to work through the diagram itself.  All of 
the vi's have online help that explains what their inputs and outputs are, what they do, and how they do 
it. 


